CS 61C Fall 2015
Guerrilla Section 1: Number Representation & C

Question 0: Silly Rabbit, Trits Are for Kids

A new memory technology with three distinct states is exploding into the
technology industry! Let's see if we can't develop some new number
representations to take advantage of this new development.

(a) First, define a rule, analogous to what we use for binary numerals, for
determining the unsigned value of a ternary numeral dn, dn-1 . . . do, and use
this rule to convert 21023 into decimal:
unsigned(dn, dn-1 . . . do) =
unsigned(21023) =

(b) Next we’'d like to define an analogue to two’'s complement for ternary
numerals, which we’ll call three’s complement. Three’s complement numbers
should be as evenly distributed between positive and negative as possible
(favor negative if necessary), should have a zero at 03, and should increase
in value when incremented as an unsigned value (except in the case of
overflow). Define a rule for negating a three’s complement number.

(c) What is the most positive possible three’s complement 8-trit number?
Using this result, specify a rule for determining if a three’s complement
number is positive or negative.

(d) There are two different two’'s complement numbers who are their own
inverse. Specify these numbers.

(e) Which numbers in three’s complement are their own inverse?

() What arithmetic operation is a shift left logical equivalent to with three’s
complement numbers?

(g) What arithmetic operation is a shift right arithmetic equivalent to with
two’s complement numbers?

Question 1: Number Representation

1) Convert the following 8-bit two’s complement numbers from hexadecimal
to decimal:

0x80 =
OxF4 =
OxOE =

2) What's the biggest change to the PC as the result of a jump on a 32-bit
MIPS system?

3) Assume that the most significant bit (MSB) of x is a 0. We store the result
of flipping x's bits into y. Interpreted in the following number
representations, how large is the magnitude of y relative to the magnitude of
x? Circle ONE choice per row.

Unsigned ly| < |X] ly| = |X] ly] >|X]| Can't Tell
One’s Complement Iyl < |X] lyl = |X] ly] >|X]| Can’t Tell
Two’s Complement Iyl < |X] lyl = |X] ly| >|X] Can’t Tell
Sign and Magnitude ly| < |X] ly| = |X] ly] >|X]| Can’t Tell

Question 2: C strings/pointers (Fa03, Q2)
a. (2pts) Given the following declarations:

char a[14] = “pointers in c”;
char c = 'b’;
char *pl = &c, **p2 = &pl,

Cross out any of the following statements that are not correct C:

pl=a+5;
&pl = &al0];
p2 = a;
*(a+10) =t

*p2 = %c;

b. (3pts) Consider the following C program.

#include <stdio.h>

char* set(char c, inti) {
[* See below for line to insert here */
str[i] = c; Return
str;

}

int main(){
char* output;

output = set(‘o’, 2); output
= set('w’, 0); output =
set('r, 1);

printf(“%s”, output);

return O;

1

For each of the following lines inserted as indicated into procedure set,
what is printed when the program executes? (If the program causes an
error during compilation, say “compilation error”; if it causes an error or
undefined results while running, say “runtime error.”)

al) static char str[] = “thing”;

a2) char str[] = “thing”;

a3) char *str = malloc(6);
strcpy(str, “thing”)

Question 3: Memory management in C (sp15, dis2, g1)
1. In which memory sections {CODE, STATIC, HEAP, STACK) do the following reside?
#idefine C 2

const int wval = 16; arg [] str [1
char arr[] = "foo";
void foo(int arg){ arr [] *gtr [1
char #str = (char *) malloc (C#val);
char #*ptr = arr; val [] c L 1
}

2. What is wrong with the C code below?

int* ptr = malloc(4 * sizeof(int));
if(extra_large) ptr = malloc(10 * sizeof(intl});
return ptr;

3. Write code to prepend (add to the start) to a linked list, and to free/empty the entire list.
struct 1l_node { struct 1ll_node* mext; int value; }

free_ll(struct 1l_node** list) prepend(struct 11l_node** list, int wvalue)

Note: 1list points to the first element of the list, or to NULL if the list is emnpty.

Question 4: Memory management in C (Fa06, M2)
A bignuwm is a data structure designed to represent large integers. It does so by abstractly considering
all of the bits in the num array as part of one very large integer. This code is run on a standard 32-bit
MIPS machine, where & werd (defined below) is 32 bits wide and 8 hal fwerd is 16 bits wide.

typedef unsigoned int word H H H .
tapodef unsigmed short halfwords Thi= function shows how bignums are used:

typedef strouoct bigoum struact

int lengthy A¢ pumber of words woid i_""'-“’t—h ignmdhig’nu_m 'l_’r i .
word *pumjy S the actosl dats printf{"0x")y /¥ Print hex prefix
} bignum; for t.'i.n'r. i = h—?lungth—ir_ib-tlr d==]
Prinotf ("%08x", b->mam[i]lk;
a) Is the ordering of wocds in the nom array ¥
BIG or LITTLE endian? {circle omne)
b} How many bytes would be used in the static, static stack heap
stack and heap areas as the result of lines 1, 3
and & below? Treat each line independenthyl Line 1
E.g., For line 3, don't count the space allocated -
in line L. Bine 3
bignum biggimp Line 4
iot mainof{iot argo, char *arcgv[]) {

I
Z
F bignum bigTriple[X], *bighrray[4]:
d bighrray[1l] = (bignum *) malloc (sizecf{bigoum} * 2j;

b} Complete the ada function for two bignums, which you may assume are the same lengch, Our C
compiler translates = - x + 5 (whare x,v.z are words) to add (Not aadw, as is customary) and thus
could generate a hardware (HW) overflow we don't want, as wea're ranning on untrusted HW. Your
code should be written =0 that words never overflow in HW (20 we do all adding in the halfword).

woid add(bigmum *a, bigonum *b, bigoum *sum, word carry_imn, word *carry_out)] {

A reserve space for Augs array. femember & and b oare the SAME lensgth. ..

sum=>npum =

for (imt i=0; i < a->lengthy i+s) | A7 word=by-word do addition of lo, bi halfwords
FF add Io halfwords of a,b
word lo -
A add hi helfwords of a;b fbet in the safe, low halfword area so oo S8 overflow)
word hi -

FF combine low and hi halfwords [(put back in their pleces), like & Ipi-ori
sum=>numfi] = thi << 16) | (halfword) lo;
#F what s the carry in for the next word?

carry_io -

t
sum=->length = a->leogth;
*garry_out = carrcy_img

