
CS 61C:
Great Ideas in Computer Architecture

Introduction to C, Part II

Instructors:
John Wawrzynek & Vladimir Stojanovic

http://inst.eecs.Berkeley.edu/~cs61c/fa15

1

Agenda

• “Pointers” in C
• Clickers/Peer Instruction Time
• Administrivia
• Arrays in C
• News/Technology Break
• Pointers, Arrays, args to Main
• And in Conclusion, …

2

Processor

Control

Datapath

Components of a Computer

3

PC

Registers

Arithmetic & Logic Unit
(ALU)

Memory
Input

Output

Bytes

Enable?
Read/Write

Address

Write
Data

Read
Data

Processor-Memory Interface I/O-Memory Interfaces

Program

Data

Address vs. Value
• Consider memory to be a single huge array

– Each cell of the array has an address associated
with it

– Each cell also stores some value
– Are addresses signed or unsigned numbers?

Negative address?!

• Don’t confuse the address referring to a
memory location with the value stored there

4

23 42 101 102 103 104 105 ...

Pointers
• An address refers to a particular memory

location; e.g., it points to a memory location
• Pointer: A variable that contains the address

of a variable

5

23 42 101 102 103 104 105 ...

x y

Location (address)

name
p

104

Pointer Syntax

• int *x;
– Tells compiler that variable x is address of an int

• x = &y;
– Tells compiler to assign address of y to x
– & called the “address operator” in this context

• z = *x;
– Tells compiler to assign value at address in x to z
– * called the “dereference operator” in this context

6

Creating and Using Pointers

7

• How to create a pointer:
& operator: get address of a variable
int *p, x;

p ? x ?

x = 3;
p ? x 3

p = &x;
p x 3

• How get a value pointed to?
“*” (dereference operator): get the value that the pointer points to

printf(“p points to %d\n”,*p);

Note the “*” gets used
2 different ways in this
example. In the
declaration to indicate
that p is going to be a
pointer, and in the
printf to get the
value pointed to by p.

Using Pointers for Writes

• How to change a variable pointed to?
– Use the dereference operator * on left of

assignment operator =

8

p x 5*p = 5;

p x 3

Pointers and Parameter Passing

• Java and C pass parameters “by value”
– Procedure/function/method gets a copy of the

parameter, so changing the copy cannot change the
original

void add_one (int x) {
x = x + 1;

}
int y = 3;
add_one(y);

y remains equal to 3

9

Pointers and Parameter Passing

• How can we get a function to change the value
held in a variable?

void add_one (int *p) {
*p = *p + 1;
}

int y = 3;

add_one(&y);

y is now equal to 4

10

Types of Pointers

• Pointers are used to point to any kind of data
(int, char, a struct, a pointer, etc.)

• Normally a pointer only points to one type
(int, char, a struct, etc.).
– void * is a type that can point to anything

(generic pointer)
– Use void * sparingly to help avoid program bugs,

and security issues, and other bad things!

11

More C Pointer Dangers
• Declaring a pointer just allocates space to hold the

pointer – does not allocate the thing being pointed to!
• Local variables in C are not initialized, they may

contain anything (aka “garbage”)
• What does the following code do?

12

void f()
{

int *ptr;
*ptr = 5;

}

Pointers and Structures
typedef struct {

int x;
int y;

} Point;

Point p1;
Point p2;
Point *paddr;

/* dot notation */
int h = p1.x;
p2.y = p1.y;

paddr = &p1;

/* arrow notation */
h = paddr->x;
h = (*paddr).x;

/*structure assignment*/
p2 = p1;

13

Note, C structure assignment is not a “deep
copy”. All members are copied, but not
things pointed to by members.

Pointers in C
• Why use pointers?

– If we want to pass a large struct or array, it’s easier /
faster / etc. to pass a pointer than the whole thing

– Want to modify an object, not just pass its value
– In general, pointers allow cleaner, more compact code

• So what are the drawbacks?
– Pointers are probably the single largest source of bugs

in C, so be careful anytime you deal with them
• Most problematic with dynamic memory management—

coming up next lecture
• Dangling references and memory leaks

14

Why Pointers in C?
• At time C was invented (early 1970s), compilers often

didn’t produce efficient code
– Computers 25,000 times faster today, compilers better

• C designed to let programmer say what they want code
to do without compiler getting in way

• Today, many applications attain acceptable performance
using higher-level languages without pointers

• Low-level system code still needs low-level access via
pointers, hence continued popularity of C

15

Video: Fun with Pointers
Worth a look.

https://www.youtube.com/watch?v=6pmWojisM_E

16

https://www.youtube.com/watch?v=6pmWojisM_E

Clickers/Peer Instruction Time
void foo(int *x, int *y)
{ int t;

if (*x > *y) { t = *y; *y = *x; *x = t; }
}
int a=3, b=2, c=1;
foo(&a, &b);
foo(&b, &c);
foo(&a, &b);
printf("a=%d b=%d c=%d\n", a, b, c);

17

A: a=3 b=2 c=1
B: a=1 b=2 c=3
C: a=1 b=3 c=2
D: a=3 b=3 c=3
E: a=1 b=1 c=1

Result is:

Administrivia
• We can accommodate all those on the wait-list, but you

have to enroll in a lab section with space!
– Lab section is important, but you can attend different discussion

section
– Enroll into lab with space, and try to swap with someone later

• HW0 out, due: Sunday 9/06 @ 11:59:59pm
• Give paper copy of mini-bio to your TA
• Get iClickers and register on bCourses! Participation

points starts today!
• People with university-related time conflict with lectures

should contact the head GSIs. We will if the participation
portion of the grade can be made-up in some other way.

• Let us know about exam conflicts by the end of this week

18

C Arrays

• Declaration:
int ar[2];

declares a 2-element integer array: just a block of
memory

int ar[] = {795, 635};

declares and initializes a 2-element integer array

19

C Strings
• String in C is just an array of characters

char string[] = "abc";
• How do you tell how long a string is?

– Last character is followed by a 0 byte
(aka “null terminator”)

20

int strlen(char s[])
{

int n = 0;
while (s[n] != 0) n++;
return n;

}

Array Name / Pointer Duality
• Key Concept: Array variable is a “pointer” to the first

(0th) element
• So, array variables almost identical to pointers

– char *string and char string[] are nearly
identical declarations

– Differ in subtle ways: incrementing, declaration of filled
arrays

• Consequences:
– ar is an array variable, but works like a pointer
– ar[0] is the same as *ar
– ar[2] is the same as *(ar+2)
– Can use pointer arithmetic to conveniently access arrays

21

Changing a Pointer Argument?

• What if want function to change a pointer?
• What gets printed?

void inc_ptr(int *p)
{ p = p + 1; }

int A[3] = {50, 60, 70};
int *q = A;
inc_ptr(q);
printf(“*q = %d\n”, *q);

*q = 50

50 60 70

A q

Pointer to a Pointer

• Solution! Pass a pointer to a pointer, declared
as **h

• Now what gets printed?
void inc_ptr(int **h)
{ *h = *h + 1; }

int A[3] = {50, 60, 70};
int *q = A;
inc_ptr(&q);
printf(“*q = %d\n”, *q);

*q = 60

50 60 70

A q q

C Arrays are Very Primitive
• An array in C does not know its own length,

and its bounds are not checked!
– Consequence: We can accidentally access off the

end of an array
– Consequence: We must pass the array and its size

to any procedure that is going to manipulate it

• Segmentation faults and bus errors:
– These are VERY difficult to find;

be careful! (You’ll learn how to debug these in lab)

24

Use Defined Constants
• Array size n; want to access from 0 to n-1, so you should use

counter AND utilize a variable for declaration & incrementation
– Bad pattern
int i, ar[10];
for(i = 0; i < 10; i++){ ... }

– Better pattern
const int ARRAY_SIZE = 10;
int i, a[ARRAY_SIZE];
for(i = 0; i < ARRAY_SIZE; i++){ ... }

• SINGLE SOURCE OF TRUTH
– You’re utilizing indirection and avoiding maintaining two copies of the

number 10
– DRY: “Don’t Repeat Yourself”

25

Pointing to Different Size Objects
• Modern machines are “byte-addressable”

– Hardware’s memory composed of 8-bit storage cells, each has a
unique address

• A C pointer is just abstracted memory address
• Type declaration tells compiler how many bytes to fetch on

each access through pointer
– E.g., 32-bit integer stored in 4 consecutive 8-bit bytes

26

424344454647484950515253545556575859

int *x

32-bit integer
stored in four bytes

short *y

16-bit short stored
in two bytes

char *z

8-bit character
stored in one byte

Byte address

sizeof() operator

• sizeof(type) returns number of bytes in object
– But number of bits in a byte is not standardized

• In olden times, when dragons roamed the earth, bytes
could be 5, 6, 7, 9 bits long

• By definition, sizeof(char)==1
• Can take sizeof(arr), or sizeof(structtype)
• We’ll see more of sizeof when we look at

dynamic memory management

27

28

Pointer Arithmetic
pointer + number pointer – number
e.g., pointer + 1 adds 1 something to a pointer

char *p;
char a;
char b;

p = &a;
p += 1;

int *p;
int a;
int b;

p = &a;
p += 1;

In each, p now points to b
(Assuming compiler doesn’t
reorder variables in memory.

Never code like this!!!!)

Adds 1*sizeof(char)
to the memory address

Adds 1*sizeof(int)
to the memory address

Pointer arithmetic should be used cautiously

29

Arrays and Pointers

• Array ≈ pointer to the initial (0th) array
element

a[i] ≡ *(a+i)

• An array is passed to a function as a pointer
– The array size is lost!

• Usually bad style to interchange arrays and
pointers

– Avoid pointer arithmetic!

Really int *array

int
foo(int array[],

unsigned int size)
{

… array[size - 1] …
}

int
main(void)
{

int a[10], b[5];
… foo(a, 10)… foo(b, 5) …

}

Must explicitly
pass the size

Passing arrays:

30

Arrays and Pointers
int
foo(int array[],

unsigned int size)
{

…
printf(“%d\n”, sizeof(array));

}

int
main(void)
{

int a[10], b[5];
… foo(a, 10)… foo(b, 5) …
printf(“%d\n”, sizeof(a));

}

What does this print?

What does this print?

8

40

... because array is really
a pointer (and a pointer is
architecture dependent, but
likely to be 8 on modern
machines!)

31

Arrays and Pointers

int i;
int array[10];

for (i = 0; i < 10; i++)
{
array[i] = …;

}

int *p;
int array[10];

for (p = array; p < &array[10]; p++)
{
*p = …;

}

These code sequences have the same effect!

Clickers/Peer Instruction Time
int x[] = { 2, 4, 6, 8, 10 };
int *p = x;
int **pp = &p;
(*pp)++;
(*(*pp))++;
printf("%d\n", *p);

32

Result is:
A: 2
B: 3
C: 4
D: 5
E: None of the above

In the News:
Researchers produce industry's first

7nm node test chips
(July 9, 2015) An alliance led by
IBM Research today
announced that it has
produced the semiconductor
industry's first 7nm
(nanometer) node test chips
with functioning transistors

Read more at:
http://phys.org/news/2015-07-
industry-7nm-node-
chips.html#

33

Microprocessors utilizing 22nm and 14nm technology power today's servers, cloud
data centers and mobile devices

http://phys.org/news/2015-07-industry-7nm-node-chips.html%23jCp

Concise strlen()
int strlen(char *s)
{

char *p = s;
while (*p++)

; /* Null body of while */
return (p – s – 1);

}

What happens if there is no zero character
at end of string?

34

Point past end of array?

• Array size n; want to access from 0 to n-1, but
test for exit by comparing to address one
element past the array
int ar[10], *p, *q, sum = 0;
...
p = &ar[0]; q = &ar[10];
while (p != q)

/* sum = sum + *p; p = p + 1; */
sum += *p++;

– Is this legal?
• C defines that one element past end of array

must be a valid address, i.e., not cause an error

Valid Pointer Arithmetic

• Add an integer to a pointer.
• Subtract 2 pointers (in the same array)
• Compare pointers (<, <=, ==, !=, >, >=)
• Compare pointer to NULL (indicates that the

pointer points to nothing)

Everything else illegal since makes no sense:
• adding two pointers
• multiplying pointers
• subtract pointer from integer

Arguments in main()

• To get arguments to the main function, use:
– int main(int argc, char *argv[])

• What does this mean?
– argc contains the number of strings on the

command line (the executable counts as one, plus
one for each argument). Here argc is 2:

unix% sort myFile

– argv is a pointer to an array containing the
arguments as strings

37

Example

• foo hello 87
• argc = 3 /* number arguments */

• argv[0] = "foo",
argv[1] = "hello",
argv[2] = "87"
– Array of pointers to strings

38

And In Conclusion, …

• Pointers are an abstraction of machine memory
addresses

• Pointer variables are held in memory, and pointer
values are just numbers that can be manipulated
by software

• In C, close relationship between array names and
pointers

• Pointers know the type of the object they point
to (except void *)

• Pointers are powerful but potentially dangerous

39

	CS 61C: �Great Ideas in Computer Architecture �Introduction to C, Part II
	Agenda
	Components of a Computer
	Address vs. Value
	Pointers
	Pointer Syntax
	Creating and Using Pointers
	Using Pointers for Writes
	Pointers and Parameter Passing
	Pointers and Parameter Passing
	Types of Pointers
	More C Pointer Dangers
	Pointers and Structures
	Pointers in C
	Why Pointers in C?
	Video: Fun with Pointers�Worth a look.
	Clickers/Peer Instruction Time
	Administrivia
	C Arrays
	C Strings
	Array Name / Pointer Duality
	Changing a Pointer Argument?
	Pointer to a Pointer
	C Arrays are Very Primitive
	Use Defined Constants
	Pointing to Different Size Objects
	sizeof() operator
	Pointer Arithmetic
	Arrays and Pointers
	Arrays and Pointers
	Arrays and Pointers
	Clickers/Peer Instruction Time
	In the News:�Researchers produce industry's first 7nm node test chips
	Concise strlen()
	Point past end of array?
	Valid Pointer Arithmetic
	Arguments in main()
	Example
	And In Conclusion, …

