
CS 61C: 
Great Ideas in Computer Architecture 

Introduction to C, Part III

Instructors:
John Wawrzynek & Vladimir Stojanovic

http://inst.eecs.Berkeley.edu/~cs61c/fa15

1



Review, Last Lecture

• Pointers are abstraction of machine memory 
addresses

• Pointer variables are held in memory, and pointer 
values are just numbers that can be manipulated 
by software

• In C, close relationship between array names and 
pointers

• Pointers know the type of the object they point 
to (except void *)

• Pointers are powerful but potentially dangerous

2



Review: Clickers/Peer Instruction Time
int x[] = { 2, 4, 6, 8, 10 };
int *p = x; /* array ptr - points to 2 */
int **pp = &p;  /* ptr to array ptr */
(*pp)++; /* incr array ptr – points to 4 */
(*(*pp))++; /* incr 4 (x[1]=5) */
printf("%d\n", *p);  /* array ptr point to 5 */

3

Result is:
A: 2
B: 3
C: 4
D: 5
E: None of the above



Review: C Strings
• String in C is just an array of characters

char string[] = "abc";
• How do you tell how long a string is?

– Last character is followed by a 0 byte 
(aka “null terminator”)

4

int strlen(char s[])
{

int n = 0;
while (s[n] != 0) n++;
return n;

}



Concise strlen()
int strlen(char *s)
{

char *p = s;
while (*p++)

; /* Null body of while */
return (p – s – 1);

}

Note: *p++ returns *p then increments p (side effect)

What happens if there is no zero character at end of 
string?

5



Point past end of array?
• Array size n; want to access from 0 to n-1, but 

test for exit by comparing to address one 
element past the array

int ar[10], *p, *q, sum = 0;
...
p = &ar[0]; q = &ar[10];
while (p != q)

/* sum = sum + *p; p = p + 1; */
sum += *p++;

– Is this legal?
• C defines that one element past end of array 

must be a valid address, i.e., not cause an error
6



Valid Pointer Arithmetic

• Add an integer to a pointer.
• Subtract 2 pointers (in the same array)
• Compare pointers (<, <=, ==, !=, >, >=)
• Compare pointer to NULL (indicates that the 

pointer points to nothing)

Everything else illegal since makes no sense:
• adding two pointers
• multiplying pointers 
• subtract pointer from integer

7



Arguments in main()

• To get arguments to the main function, use:
int main(int argc, char *argv[])

• What does this mean?
– argc contains the number of strings on the 

command line (the executable counts as one, plus 
one for each argument). Here argc is 2:

unix% sort myFile

– argv is a pointer to an array containing the 
arguments as strings

8



Example

• foo hello 87
• argc = 3 /* number arguments */  

• argv[0] points to "foo", 
argv[1] points to "hello", 
argv[2] points to "87"
– Array of pointers to strings

9



C Memory Management
• How does the C compiler determine where to 

put all the variables in machine’s memory?
• How to create dynamically sized objects?
• To simplify discussion, we assume one 

program runs at a time, with access to all of 
memory.

• Later, we’ll discuss virtual memory, which lets 
multiple programs all run at same time, each 
thinking they own all of memory.

10



C Memory 
Management

• Program’s address space
contains 4 regions:
– stack: local variables inside 

functions, grows downward
– heap: space requested for 

dynamic data via malloc(); 
resizes dynamically, grows 
upward

– static data: variables declared 
outside functions, does not grow 
or shrink. Loaded when program 
starts, can be modified.

– code: loaded when program 
starts, does not change

code

static data

heap

stack~ FFFF FFFFhex

~ 0000 0000hex

1111

Memory Address
(32 bits assumed here)



Where are Variables Allocated?

• If declared outside a function, 
allocated in “static” storage 

• If declared inside function, 
allocated on the “stack”
and freed when function
returns
– main() is treated like

a function

int myGlobal;
main() {
int myTemp;

}

12



The Stack
• Every time a function is called, a new frame 

is allocated on the stack
• Stack frame includes:

– Return address (who called me?)
– Arguments
– Space for local variables

• Stack frames uses contiguous 
blocks of memory; stack pointer 
indicates start of stack frame

• When function ends, stack pointer moves 
up; frees memory for future stack frames

• We’ll cover details later for MIPS processor
fooD frame

fooB frame

fooC frame

fooA frame

Stack Pointer
13

fooA() { fooB(); }
fooB() { fooC(); }
fooC() { fooD(); }



Stack  Animation

• Last In, First Out (LIFO) data structure
main ()
{ a(0); 
}

void a (int m)
{ b(1); 
}
void b (int n)
{ c(2); 
}
void c (int o)
{ d(3); 
}
void d (int p)
{ 
}

stack

Stack Pointer

Stack Pointer

Stack Pointer

Stack Pointer

Stack Pointer

Stack 
grows 
down

14



Managing the Heap
C supports functions for heap management:

• malloc()  allocate a block of uninitialized memory
• calloc() allocate a block of zeroed memory
• free() free previously allocated block of memory
• realloc() change size of previously allocated block

• careful – it might move!

15



Malloc()
• void *malloc(size_t n):

– Allocate a block of uninitialized memory
– NOTE: Subsequent calls probably will not yield adjacent blocks
– n is an integer, indicating size of requested memory block in bytes
– size_t is an unsigned integer type big enough to “count” memory bytes
– Returns void* pointer to block; NULL return indicates no more memory
– Additional control information (including size) stored in the heap for each 

allocated block.

• Examples:  
int *ip;
ip = (int *) malloc(sizeof(int));

typedef struct { … } TreeNode;
TreeNode *tp = (TreeNode *) malloc(sizeof(TreeNode));

sizeof returns size of given type in bytes, produces more portable code

16

“Cast” operation, changes type of a variable. 
Here changes (void *) to (int *)



Managing the Heap
• void free(void *p):

– Releases memory allocated by malloc()
– p is pointer containing the address originally returned by malloc()

int *ip;
ip = (int *) malloc(sizeof(int));
... .. ..
free((void*) ip); /* Can you free(ip) after ip++ ? */

typedef struct {… } TreeNode;
TreeNode *tp = (TreeNode *) malloc(sizeof(TreeNode));

... .. ..
free((void *) tp);

– When insufficient free memory, malloc() returns NULL pointer; Check for it!

if ((ip = (int *) malloc(sizeof(int))) == NULL){
printf(“\nMemory is FULL\n”);
exit(1); /* Crash and burn! */

}
– When you free memory, you must be sure that you pass the original address 

returned from malloc() to free(); Otherwise, system exception (or worse)!

17



Using Dynamic Memory
typedef struct node {

int key;
struct node *left;
struct node *right;

} Node;

Node *root = NULL;

Node *create_node(int key, Node *left, Node *right)
{

Node *np;
if ( (np = (Node*) malloc(sizeof(Node))) == NULL)
{ printf("Memory exhausted!\n"); exit(1); }
else
{  np->key = key;

np->left = left;
np->right = right;
return np;

}
}

void insert(int key, Node **tree)
{

if ( (*tree) == NULL)
{ (*tree) = create_node(key, NULL, NULL); return; }

if (key <= (*tree)->key)
insert(key, &((*tree)->left));

else
insert(key, &((*tree)->right));

}
insert(10, &root);
insert(16, &root);
insert(5, &root);
insert(11 , &root); 18

Root

Key=10

Left Right

Key=5

Left Right
Key=16

Left Right

Key=11

Left Right



Observations

• Code, Static storage are easy: they never grow 
or shrink

• Stack space is relatively easy: stack frames are 
created and destroyed in last-in, first-out 
(LIFO) order

• Managing the heap is tricky: memory can be 
allocated / deallocated at any time

19



Clickers/Peer Instruction!
int x = 2;
int result;

int foo(int n)
{   int y;

if (n <= 0) { printf("End case!\n"); return 0; }
else
{  y = n + foo(n-x);

return y;
}

}
result = foo(10);

Right after the printf executes but before the return 0, how many copies of x and y are there
allocated in memory?

A: #x = 1, #y = 1
B: #x = 1, #y = 5
C: #x = 5, #y = 1
D: #x = 1, #y = 6
E: #x = 6, #y = 6

20



Administrivia
• We can accommodate all those on the wait list, but 

you have to enroll in a lab section with space!
– Lab section is important, but you can attend different 

discussion section
– Enroll into lab with space, and try to swap with someone 

later

• HW1: C to MIPS Practice Problems
Due 09/27 @ 23:59:59

• Midterm 1 (in lecture, covers up to and including 
9/22 lecture)

21



How are Malloc/Free implemented?

• Underlying operating system allows malloc
library to ask for large blocks of memory to 
use in heap (e.g., using Unix sbrk() call)

• C standard malloc library creates data 
structure inside unused portions to track free 
space

22



Simple Slow Malloc Implementation

23

Initial Empty Heap space from Operating System

Free Space

Malloc library creates linked list of empty blocks (one block initially)

FreeObject 1

Free

First allocation chews up space from start of free space

After many mallocs and frees, have potentially long linked list of odd-sized blocks
Frees link block back onto linked list – might merge with neighboring free space



Faster malloc implementations

• Keep separate pools of blocks for different 
sized objects

• “Buddy allocators” always round up to power-
of-2 sized chunks to simplify finding correct 
size and merging neighboring blocks:

24



Power-of-2 “Buddy Allocator”

25



Malloc Implementations

• All provide the same library interface, but can 
have radically different implementations

• Uses headers at start of allocated blocks 
and/or space in unallocated memory to hold 
malloc’s internal data structures

• Rely on programmer remembering to free 
with same pointer returned by malloc

• Rely on programmer not messing with internal 
data structures accidentally!

26



Common Memory Problems

• Using uninitialized values
• Using memory that you don’t own

– Deallocated stack or heap variable
– Out-of-bounds reference to stack or heap array
– Using NULL or garbage data as a pointer

• Improper use of free/realloc by messing with the 
pointer handle returned by malloc/calloc

• Memory leaks (you allocated something you 
forgot to later free)

27



Using Memory You Don’t Own
• What is wrong with this code?

int *ipr, *ipw;
void ReadMem() {

int i, j;
ipr = (int *) malloc(4 * sizeof(int));
i = *(ipr - 1000); j = *(ipr + 1000);
free(ipr);

}

void WriteMem() {
ipw = (int *) malloc(5 * sizeof(int));
*(ipw - 1000) = 0; *(ipw + 1000) = 0; 
free(ipw);

}

28



Using Memory You Don’t Own
• Using pointers beyond the range that had been malloc’d

– May look obvious, but what if mem refs had been result of pointer 
arithmetic that erroneously took them out of the allocated range?

int *ipr, *ipw;
void ReadMem() {

int i, j;
ipr = (int *) malloc(4 * sizeof(int));
i = *(ipr - 1000); j = *(ipr + 1000);
free(ipr);

}

void WriteMem() {
ipw = (int *) malloc(5 * sizeof(int));
*(ipw - 1000) = 0; *(ipw + 1000) = 0; 
free(ipw);

}

29



Faulty Heap Management

• What is wrong with this code?
int *pi;
void foo() {

pi = malloc(8*sizeof(int));
…
free(pi); 

}

void main() {
pi = malloc(4*sizeof(int));
foo();
…

}

30



Faulty Heap Management

• Memory leak: more mallocs than frees
int *pi;
void foo() {

pi = malloc(8*sizeof(int));
/* Allocate memory for pi */
/* Oops, leaked the old memory pointed to by pi */
…
free(pi);

}

void main() {
pi = malloc(4*sizeof(int));
foo(); /* Memory leak: foo leaks it */
…

}

31



Faulty Heap Management

• What is wrong with this code?

int *plk = NULL;
void genPLK() {

plk = malloc(2 * sizeof(int));
… … … 
plk++;

}

32



Faulty Heap Management

• Potential memory leak – handle (block 
pointer) has been changed, do you still have 
copy of it that can correctly be used in a later 
free?

int *plk = NULL;
void genPLK() {

plk = malloc(2 * sizeof(int));
… … …
plk++; /* Potential leak: pointer variable 
incremented past beginning of block! */

}

33



In the News:
Researchers produce industry's first 

7nm node test chips
(July 9, 2015) An alliance led by 
IBM Research today 
announced that it has 
produced the semiconductor 
industry's first 7nm 
(nanometer) node test chips 
with functioning transistors

Read more at: 
http://phys.org/news/2015-07-
industry-7nm-node-
chips.html#

34

Microprocessors utilizing 22nm and 14nm technology power today's servers, cloud 
data centers and mobile devices

http://phys.org/news/2015-07-industry-7nm-node-chips.html%23jCp


Faulty Heap Management

• What is wrong with this code?

void FreeMemX() {
int fnh = 0;
free(&fnh); 

}

void FreeMemY() {
int *fum = malloc(4 * sizeof(int));
free(fum+1); 
free(fum);
free(fum); 

}

35



Faulty Heap Management

• Can’t free non-heap memory; Can’t free memory 
that hasn’t been allocated

void FreeMemX() {
int fnh = 0;
free(&fnh); /* Oops! freeing stack memory */

}

void FreeMemY() {
int *fum = malloc(4 * sizeof(int));
free(fum+1); 
/* fum+1 is not a proper handle; points to middle 
of a block */
free(fum);
free(fum); 
/* Oops! Attempt to free already freed memory */

}

36



Using Memory You Haven’t Allocated

• What is wrong with this code?

void StringManipulate() {

const char *name = “Safety Critical";

char *str = malloc(10);

strncpy(str, name, 10);

str[10] = '\0';

printf("%s\n", str); 

}

37



Using Memory You Haven’t Allocated

• Reference beyond array bounds

void StringManipulate() {
const char *name = “Safety Critical";
char *str = malloc(10);
strncpy(str, name, 10);
str[10] = '\0'; 
/* Write Beyond Array Bounds */
printf("%s\n", str); 
/* Read Beyond Array Bounds */

}
38



Using Memory You Don’t Own

39

• What’s wrong with this code?

char *append(const char* s1, const char *s2) {
const int MAXSIZE = 128;
char result[128];
int i=0, j=0;
for (j=0; i<MAXSIZE-1 && j<strlen(s1); i++,j++) {
result[i] = s1[j];
}
for (j=0; i<MAXSIZE-1 && j<strlen(s2); i++,j++) {
result[i] = s2[j];
}
result[++i] = '\0';
return result;

}



Using Memory You Don’t Own

40

• Beyond stack read/write

char *append(const char* s1, const char *s2) {
const int MAXSIZE = 128;
char result[128];
int i=0, j=0;
for (j=0; i<MAXSIZE-1 && j<strlen(s1); i++,j++) {
result[i] = s1[j];
}
for (j=0; i<MAXSIZE-1 && j<strlen(s2); i++,j++) {
result[i] = s2[j];
}
result[++i] = '\0';
return result;

}
Function returns pointer to stack 

memory – won’t be valid after 
function returns

result is a local array name –
stack memory allocated



Using Memory You Don’t Own

• What is wrong with this code?

typedef struct node {
struct node* next;
int val;

} Node;

int findLastNodeValue(Node* head) {
while (head->next != NULL) { 

head = head->next;
}
return head->val; 

}

41



Using Memory You Don’t Own

• Following a NULL pointer to mem addr 0!

typedef struct node {
struct node* next;
int val;

} Node;

int findLastNodeValue(Node* head) {
while (head->next != NULL) { 
/* What if head happens to be NULL? */

head = head->next;
}
return head->val; /* What if head is NULL? */

}

42



Managing the Heap
• realloc(p,size):

– Resize a previously allocated block at p to a new size
– If p is NULL, then realloc behaves like malloc
– If size is 0, then realloc behaves like free, deallocating the block from the 

heap
– Returns new address of the memory block; NOTE: it is likely to have moved!
E.g.: allocate an array of 10 elements, expand to 20 elements later

int *ip;

ip = (int *) malloc(10*sizeof(int));
/* always check for ip == NULL */
… … …
ip = (int *) realloc(ip,20*sizeof(int));
/* always check for ip == NULL */
/* contents of first 10 elements retained */
… … …
realloc(ip,0); /* identical to free(ip) */

43



Using Memory You Don’t Own

• What is wrong with this code?

int* init_array(int *ptr, int new_size) {
ptr = realloc(ptr, new_size*sizeof(int));
memset(ptr, 0, new_size*sizeof(int));
return ptr;

}

int* fill_fibonacci(int *fib, int size) {
int i;
init_array(fib, size);
/* fib[0] = 0; */ fib[1] = 1;
for (i=2; i<size; i++)
fib[i] = fib[i-1] + fib[i-2];
return fib;

}
44



Using Memory You Don’t Own

• Improper matched usage of mem handles

int* init_array(int *ptr, int new_size) {
ptr = realloc(ptr, new_size*sizeof(int));
memset(ptr, 0, new_size*sizeof(int));
return ptr;

}

int* fill_fibonacci(int *fib, int size) {
int i;
/* oops, forgot: fib = */ init_array(fib, size);
/* fib[0] = 0; */ fib[1] = 1;
for (i=2; i<size; i++)
fib[i] = fib[i-1] + fib[i-2];
return fib;

}
45

What if array is moved to 
new location?

Remember: reallocmay move entire block



And In Conclusion, …

• C has three main memory segments in which 
to allocate data:
– Static Data: Variables outside functions
– Stack: Variables local to function
– Heap:  Objects explicitly malloc-ed/free-d.

• Heap data is biggest source of bugs in C code

46


	CS 61C: �Great Ideas in Computer Architecture �Introduction to C, Part III
	Review, Last Lecture
	Review: Clickers/Peer Instruction Time
	Review: C Strings
	Concise strlen()
	Point past end of array?
	Valid Pointer Arithmetic
	Arguments in main()
	Example
	C Memory Management
	C Memory Management
	Where are Variables Allocated?
	The Stack
	Stack  Animation
	Managing the Heap
	Malloc()
	Managing the Heap
	Using Dynamic Memory
	Observations
	Clickers/Peer Instruction!
	Administrivia
	How are Malloc/Free implemented?
	Simple Slow Malloc Implementation
	Faster malloc implementations
	Power-of-2 “Buddy Allocator”
	Malloc Implementations
	Common Memory Problems
	Using Memory You Don’t Own
	Using Memory You Don’t Own
	Faulty Heap Management
	Faulty Heap Management
	Faulty Heap Management
	Faulty Heap Management
	In the News:�Researchers produce industry's first 7nm node test chips
	Faulty Heap Management
	Faulty Heap Management
	Using Memory You Haven’t Allocated
	Using Memory You Haven’t Allocated
	Using Memory You Don’t Own
	Using Memory You Don’t Own
	Using Memory You Don’t Own
	Using Memory You Don’t Own
	Managing the Heap
	Using Memory You Don’t Own
	Using Memory You Don’t Own
	And In Conclusion, …

