CS 61C:
Great Ideas in Computer Architecture
Intro to Assembly Language, MIPS Intro

Instructors:
John Wawrzynek & Vladimir Stojanovic
http://inst.eecs.Berkeley.edu/~cs61c/fals

High Level Language

Program (e.g., C)

Compiler

Program (e.g., IS)

Levels of
Representation/Interpretation

temp = v[k];

v[k] =

v[k+1];

v[k+1] = temp;

sw Stl 0(52)

as a nhumber,

i.e., data or instructions

Machine Language
Program (MIPS)

Machine

Interpretation

sw StO, 4(S2)

0000
1010
1100
0101

Hardware Architecture Description

(e.g., block diagrams)

Architecture
Implementation

Logic Circuit Description

(Circuit Schematic Diagrams)

1001 1100
1111 0101
0110 1010
1000 0000

0110
1000
1111
1001

1010
0000
0101
1100

1111 0101 1000
1001 1100 0110
1000 0000 1001
0110 1010 1111

Assembly Language

* Basic job of a CPU: execute lots of instructions.

* Instructions are the primitive operations that the
CPU may execute.

* Different CPUs implement different sets of
instructions. The set of instructions a particular
CPU implements is an

Instruction Set Architecture (ISA).

— Examples: ARM, Intel x86, MIPS, RISC-V,
IBM/Motorola PowerPC (old Mac), Intel 1A64, ...

Instruction Set Architectures

 Early trend was to add more and more instructions

to new CPUs to do elaborate operations

— VAX architecture had an instruction to multiply
polynomials!

* RISC philosophy (Cocke IBM, Patterson, Hennessy,
1980s) —
Reduced Instruction Set Computing

— Keep the instruction set small and simple, makes it
easier to build fast hardware.

— Let software do complicated operations by composing
simpler ones.

MIPS Architecture

* MIPS — semiconductor company that built one of
the first commercial RISC architectures

* We will study the MIPS architecture in some detail
in this class (also used in upper division courses CS
151, 152, 162, 164)

* Why MIPS instead of Intel x867

— MIPS is simple, elegant. Don’t want to get bogged
down in gritty details.

— MIPS widely used in embedded apps, x86 little used in
embedded, and more embedded computers than PCs

Assembly Variables: Registers

* Unlike HLL like C or Java, assembly cannot use

variables
— Why not? Keep Hardware Simple

* Assembly Operands are registers

— Limited number of special locations built directly
into the hardware

— Operations can only be performed on these!

* Benefit: Since registers are directly in
hardware, they are very fast
(faster than 1 ns - light travels 30cm in 1 ns!!!)

Number of MIPS Registers

* Drawback: Since registers are in hardware,

there are a predetermined number of them

— Solution: MIPS code must be very carefully put
together to efficiently use registers

* 32 registers in MIPS

— Why 327 Smaller is faster, but too small is bad.
Goldilocks problem.

Each MIPS register is 32 bits wide
— Groups of 32 bits called a word in MIPS

Names of MIPS Registers

* Registers are numbered from 0 to 31
* Each register can be referred to by number or name

* Number references:
-S0, S1, S2, ... $S30, S31
* For now:
—S16 - S23=» SsO - Ss7 (correspond to C variables)
— S8 -S15 =» St0 - St7 (correspond to temporary variables)
— Later will explain other 16 register names

* In general, use names to make your code more
readable

C, Java variables vs. registers

* In C (and most High Level Languages) variables

declared first and given a type

e Example: int fahr, celsius;
char a, b, ¢, d, e;

* Each variable can ONLY represent a value of
the type it was declared as

(cannot mix and match int and char variables).

* In Assembly Language, registers have no type;
operation determines how register contents are
treated

Addition and Subtraction of Integers

e Addition in Assembly
— Example: add $s0,$s1l,$s2 (in MIPS)

— Equivalent to: a=b+c (in C)
where C variables & MIPS registers are:
a© Ss0,be Ssl, c e Ss2

* Subtraction in Assembly
— Example: sub $s3,$s4,5s5 (in MIPS)

— Equivalent to: d=e-f (in C)

where C variables & MIPS registers are:
d < Ss3,e © Ss4, f & Ss5

10

Addition and Subtraction of Integers
Example 1

* How to do the following C statement?
a=b+c+d-e;
* Break into multiple instructions
add $t0, $sl, $s2
add $t0, $t0, $s3
sub $s0, $t0, $s4

-I\,?I‘I?)iggle line of C may break up into several lines of

* Notice the use of temporary registers — don’t want to
modify the variable registers Ss

* Everything after the hash mark on each line is ignored
(comments)

11

Immediates

* Immediates are numerical constants

* They appear often in code, so there are special
instructions for them

* Add Immediate:
addi $s0,5s1,-10 (in MIPS)
f=g-10 (in C)
where MIPS registers $s0, $s1 are associated with
Cvariablesf, g
* Syntax similar to add instruction, except that
last argument is a number instead of a register

add $s0, S$Ssl, Szero (in MIPS)
f=g (in C)

Overflow In Arithmetic

« Reminder: Overflow occurs when there Is a
“mistake” in arithmetic due to the limited
precision in computers.

« Example (4-bit unsigned numbers):

15 1111
+ 3 + 0011
18 10010

 But we don’t have room for 5-bit solution, so
the solution would be 0010, which is +2, and

‘wrong’.

13

Overflow handling in MIPS

* Some languages detect overflow (Ada),
some don’t (most C implementations)

 MIPS solution is 2 kinds of arithmetic instructions:

— These cause overflow to be detected
* add (add)
* add immediate (addi)
* subtract (sub)
— These do not cause overflow detection
* add unsigned (addu)
» add immediate unsigned (addiu)
* subtract unsigned (subu)

* Compiler selects appropriate arithmetic
— MIPS C compilers produce addu, addiu, subu

14

Data Transfer:

Load from and Store to memory

Processor

Enable?
Read/Write

Address

Write Data
Store to
memory

Read Data
Load from
memory

Processor-Memory Interface

\)
Y \)

|/O-Memory Interfaces

15

Memory Addresses are in Bytes

Lots of data is smaller than 32 bits, but rarely
smaller than 8 bits — works fine if everything is a
multiple of 8 bits

8 blt Chunk iS Ca”ed a byte Most significant byte in a word
(1 word = 4 bytes) !

Memory addresses are really SR CITN NETTN BN

in bytes, not words 1211314115
Word addresses are 4 bytes 819110]11
apart 415167

— Word address is same as addressof | O [1] 2] 3

leftmost byte — most significant byte
(i.e. Big-endian convention)

Transfer from Memory to Register

e Ccode
int A[100];
g =h + A[3];

e Using Load Word (1w) in MIPS:
lw $t0,12($s3) # Temp reg StO gets A[3]
add S$sl1,S$s2,5t0 #g=h+A[3]

Note: Ss3 — base register (pointer)
12 — offset in bytes
Offset must be a constant known at assembly time

17

Transfer from Register to Memory

e Ccode
int A[100];
A[10] = h + A[3];

* Using Store Word (sw) in MIPS:
lw $t0,12($s3) #Temp reg StO gets A[3]
add $t0,S$s2,3$t0 # Temp reg St0 gets h + A[3]
sw St0, 40($s3) #A[10]=h+A[3]

Note: Ss3 — base register (pointer)
12, 40 — offsets in bytes

Ss3+12 and $s3+40 must be multiples of 4

18

Loading and Storing bytes

* In addition to word data transfers
(1w, sw), MIPS has data transfers:

— load byte: 1b
— store byte: sb
« Same format as 1w, sw

*E.g, 1b $s0, 3(Ss1)

— contents of memory location with address = sum
of “3” + contents of register Ss1 is copied to the low
byte position of register SsO.

SSO . XXXX XXXX XXXX XXXX XXXX XXXX | X22Z 2222

—
_ _ _ byte
...is copied to “sign-extend” loaded

This bit 19

Speed of Registers vs. Memory

Given that
— Registers: 32 words (128 Bytes)

— Memory: Billions of bytes (2 GB to 8 GB on laptop)

and the RISC principle is...

— Smaller is faster

How much faster are registers than memory??

About 100-500 times faster!
— in terms of latency of one access

20

&

How many hours h on Homework 07?

A:0<h<5
B:5<h<10
C:10<h< 15
D:15<h< 20
E:20<h

21

Clickers/Peer Instruction

We want to translate = *v +1 Into MIPS
(x, y pointers stored In: Ss1)

SW Ssl, 0 (

22

MIPS Logical Instructions

* Useful to operate on fields of bits within a word
— e.g., characters within a word (8 bits)

* Operations to pack /unpack bits into words

* Called logical operations

Logical C Java MIPS
operations operators operators instructions
Bit-by-bit AND & & and
Bit-by-bit OR | | or
Bit-by-bit NOT ~ ~ not
Shift left << << sll
Shift right > > >>> srl

Logic Shifting

e Shift Left: s11 $s1,$s2, 2 #s1l=s2<<2

— Store in Ss1 the value from Ss2 shifted 2 bits to the
left (they fall off end), inserting O’s on right; <<in C.

Before: 0000 0002,
0000 0000 0000 0000 0000 0000 0000 0010y

After: 0000 0008,
0000 0000 0000 0000 0000 0000 0000 100046

What arithmetic effect does shift left have?

* Shift Right: sr1 is opposite shift; >>

24

Arithmetic Shifting

Shift right arithmetic moves n bits to the right
(insert high order sign bit into empty bits)

For example, if register SsO contained

11111111 111111111111 1111 1110 0111, = -25,,,
If executed sra Ss0, SsO, 4, result is:
11111111 1111111111171 1111 1111 1110, ,= -2

ten

Unfortunately, this is NOT same as dividing by 2"
— Fails for odd negative numbers
— C arithmetic semantics is that division should round towards O

25

Computer Decision Making

Based on computation, do something different
In programming languages: if-statement

MIPS: if-statement instruction is
beq registerl, register2, Ll

means: go to statement labeled L1
if (value in register1) == (value in register2)

....otherwise, go to next statement
beqg stands for branch if equal
Other instruction: bne for branch if not equal

26

Types of Branches

* Branch — change of control flow

* Conditional Branch — change control flow
depending on outcome of comparison

— branch if equal (beqg) or branch if not equal (bne)

* Unconditional Branch — always branch
— a MIPS instruction for this: jump (7)

Example if Statement

e Assuming translations below, compile if block
f>5s0 g—>S5s1 h->$s2
i > S$Ss3 j2 $s4

if (1 == 7) bne S$Ss3,5s4,Exit
f = g + h; add $s0,$sl, $s?2
Exit:

* May need to negate branch condition

28

Example if-else Statement

* Assuming translations below, compile
f>5s0 g—>S5s1 h->$s2
i > S$Ss3 j2 $s4

if (1 == 7) bne $s3,S5s4,Else
f = g + h; add S$s0,Ssl, $s?2
else 7 Exit

f = g - h; Else: sub $s0,S$sl, $s2
Exit:

29

Administrivia
* Hopefully everyone turned-in HWO

* Project 1 out

— Make sure you test your code on hive machines, that’s
where we’ll grade them

e Guerrilla sections starting this Saturday
— Saturdays and Tuesdays, every other week
— Schedule on the course website

30

CS61C in the News pt. 1

RICAL ENGINEERING
UTING

First RISC (Reduced Instruction-Set Computing) Microprocessor

UC Berkeley students gned and built the first VLSI reduced
instruction-set compute 81. ' simplified instructions of
RISC-I reduced the hardware for instruction decode and control,
which ("ilf*:'.i:_‘,f‘,i a flat 32-bit addre ((‘ a large set of registets,
and pipelined execution. A goo h 0 C programs and the Unix
opet au,n;) ‘ [enced ,muucuon sets widely used
today, includis jse for game corsoles, smartphones and tablets,

SR
.-(- , _l .
-

CS61C in the News pt. 2

The RISC-V Instruction Set
Architecture

RISC-V (pronounced "risk-five") is a new instruction set
architecture (ISA) that was originally designed to support
computer architecture research and education, which we now
hope will become a standard open architecture for industry
implementations. RISC-V was originally developed in the
Computer Science Division of the EECS Department at
the University of California, Berkeley.

EECS151/251A, CS152, CS250, CS252 use RISC-V

32

Inequalities iIn MIPS

* Until now, we’ve only tested equalities
(== and !=in C). General programs need to test < and >
as well.

* Introduce MIPS Inequality Instruction:
“Set on Less Than”

Syntax: slt regl,reg?Z,reg3
Meaning: if (reg2 < reg3)
regl =1;
else regl = 0;
“set” means “change to 17,
“reset” means “change to 0”.

33

Inequalities in MIPS Cont.

* How do we use this? Compile by hand:
if (g < h) goto Less; #g:5s0, h:Ss1

* Answer: compiled MIPS code...

slt $t0,$s0, $Ssl1#5t0=1ifg<h
bne $t0, $Szero,Less #if St0!=0 goto Less

* Register Szero always contains the value 0, so bne and beq
often use it for comparison after an slt instruction

* s1tu treats registers as unsigned

34

Immediates In Inequalities

« s1ti animmediate version of s1t to test
against constants

Loop:

slti $t0,$s0,1 # St0 = 1 1if
Ss0<1
begq $t0,S$zero,Loop # goto Loop
1f St0==0
(if (Ss0>=1))

35

Loops In C/Assembly

e Simple loop in C; A[] is an array of ints

do { = o + Ali];
=i+

} while (i 1= h);

* Use this mapping: , h, i, j, &A[0]
, Ss2,Ss3, Ss4, Ss5
Loop: sll S$tl1,9$s3,2 # Stl= 4*1

addu $tl,Stl, $sb5 # Stl=addr A+41
1w stl,0(stl) # Stl=A[1]
add , , Stl g=g+A[1]

bne $s3,5s2,Loop goto Loop

#

addu $s3,$s3,5s4 # 1=1+7
#
1f 1!=h

36

And In Conclusion ...

Computer words and vocabulary are called instructions
and instruction set respectively

MIPS is example RISC instruction set in this class
Rigid format: 1 operation, 2 source operands, 1

destination

— add, sub,mul,div, and, or,sll,srl, sra

— 1w, sw, 1b, sb to move data to/from registers from/to
memory

— beqg, bne, j, slt, slti fordecision/flow control

Simple mappings from arithmetic expressions, array
access, if-then-else in C to MIPS instructions

