
CS 61C:
Great Ideas in Computer Architecture

More MIPS, MIPS Functions

1

Instructors:
John Wawrzynek & Vladimir Stojanovic

http://inst.eecs.Berkeley.edu/~cs61c/fa15

Levels of
Representation/Interpretation

lw $t0, 0($2)
lw $t1, 4($2)
sw $t1, 0($2)
sw $t0, 4($2)

High Level Language
Program (e.g., C)

Assembly Language
Program (e.g., MIPS)

Machine Language
Program (MIPS)

Hardware Architecture Description
(e.g., block diagrams)

Compiler

Assembler

Machine
Interpretation

temp = v[k];
v[k] = v[k+1];
v[k+1] = temp;

0000 1001 1100 0110 1010 1111 0101 1000
1010 1111 0101 1000 0000 1001 1100 0110
1100 0110 1010 1111 0101 1000 0000 1001
0101 1000 0000 1001 1100 0110 1010 1111

Architecture
Implementation

Anything can be represented
as a number,

i.e., data or instructions

2

Logic Circuit Description
(Circuit Schematic Diagrams)

From last lecture …

• Computer “words” and “vocabulary” are called
instructions and instruction set respectively

• MIPS is example RISC instruction set used in CS61C
• Rigid format: 1 operation, 2 source operands, 1

destination
– add,sub,mul,div,and,or,sll,srl,sra
– lw,sw,lb,sb to move data to/from registers from/to

memory
– beq, bne, j, slt, slti for decision/flow control

• Simple mappings from arithmetic expressions, array
access, in C to MIPS instructions

3

Processor

Control

Datapath

Review: Components of a Computer

4

Program Counter

Registers

Arithmetic & Logic Unit
(ALU)

Memory
Input

Output

Bytes

Enable?
Read/Write

Address

Write
Data

Read
Data

Processor-Memory Interface I/O-Memory Interfaces

Program

Data

How Program is Stored

5

Memory

Bytes

Program

Data

One MIPS Instruction = 32 bits

Assembler to Machine Code
(more later in course)

6

foo.S bar.S

Assembler Assembler

foo.o bar.o

Linker lib.o

a.out

Assembler source files (text)

Machine code object files

Pre-built object
file libraries

Machine code executable file

Assembler converts human-
readable assembly code to
instruction bit patterns

Processor

Control

Datapath

Executing a Program

7

PC

Registers

Arithmetic & Logic Unit
(ALU)

Memory

BytesInstruction
Address

Read
Instruction
Bits

Program

Data

• The PC (program counter) is internal register inside processor holding byte
address of next instruction to be executed.

• Instruction is fetched from memory, then control unit executes instruction
using datapath and memory system, and updates program counter (default is
add +4 bytes to PC, to move to next sequential instruction)

Review if-else Statement

• Assuming translations below, compile
f → $s0 g → $s1 h → $s2
i → $s3 j → $s4

if (i == j) bne $s3,$s4,Else

f = g + h; add $s0,$s1,$s2

else j Exit

f = g – h; Else: sub $s0,$s1,$s2

Exit:
8

Control-flow Graphs: A visualization

bne $s3,$s4,Else

add $s0,$s1,$s2

j Exit

Else:sub $s0,$s1,$s2

Exit:

9

bne $s3, $s4, Else

add $s0, $s1, $s2
j Exit

Else: sub $s0, $s1, $s2

Exit: …

Clickers/Peer Instruction

What is the code above?
A: while loop
B: do … while loop
C: for loop
D: A or C
E: Not a loop

addi $s0,$zero,0
Start: slt $t0,$s0,$s1

beq $t0,$zero,Exit
sll $t1,$s0,2
addu $t1,$t1,$s5
lw $t1,0($t1)
add $s4,$s4,$t1
addi $s0,$s0,1
j Start

Exit:

10

Administrivia

• Fill-out the form to link bitbucket and edX accounts
– Look-out for post on Piazza

• Advertising Guerrilla sections again
– Tuesdays and Saturdays every two weeks

• CE applications approved for all students

11

CS61C In the News
• MIPS Creator CI20 dev

board now available
– A lot like Raspberry Pi but

with MIPS CPU
– Supports Linux and

Android

• 1.2GHz 32-bit MIPS with
integrated graphics

12

http://liliputing.com/2015/01/mips-creator-ci20-dev-board-
now-available-for-65.html

CS61C In the News pt. 2

RISC-V ANGEL:
• Try RISC-V in a browser
• http://riscv.org/angel/

13

http://riscv.org/angel/

Six Fundamental Steps in
Calling a Function

1. Put parameters in a place where function can
access them

2. Transfer control to function
3. Acquire (local) storage resources needed for

function
4. Perform desired task of the function
5. Put result value in a place where calling code

can access it and restore any registers you used
6. Return control to point of origin, since a function

can be called from several points in a program
14

MIPS Function Call Conventions

• Registers faster than memory, so use them
• $a0–$a3: four argument registers to pass

parameters ($4 - $7)
• $v0,$v1: two value registers to return

values ($2,$3)
• $ra: one return address register to return to

the point of origin ($31)

15

Instruction Support for Functions (1/4)

... sum(a,b);... /* a,b:$s0,$s1 */
}
int sum(int x, int y) {
return x+y;
}
address (shown in decimal)
1000
1004
1008
1012
1016
…
2000
2004

C

M
I
P
S

In MIPS, all instructions are 4
bytes, and stored in memory
just like data. So here we show
the addresses of where the
programs are stored.

16

Instruction Support for Functions (2/4)

... sum(a,b);... /* a,b:$s0,$s1 */
}
int sum(int x, int y) {
return x+y;
}
address (shown in decimal)
1000 add $a0,$s0,$zero # x = a
1004 add $a1,$s1,$zero # y = b
1008 addi $ra,$zero,1016 #$ra=1016
1012 j sum #jump to sum
1016 … # next instruction
…
2000 sum: add $v0,$a0,$a1
2004 jr $ra # new instr. “jump register”

C

M
I
P
S

17

Instruction Support for Functions (3/4)

... sum(a,b);... /* a,b:$s0,$s1 */
}
int sum(int x, int y) {
return x+y;
}

2000 sum: add $v0,$a0,$a1
2004 jr $ra # new instr. “jump register”

• Question: Why use jr here? Why not use j?

• Answer: sum might be called by many places, so we can’t
return to a fixed place. The calling proc to sum must be able
to say “return here” somehow.

C

M
I
P
S

18

Instruction Support for Functions (4/4)
• Single instruction to jump and save return address:

jump and link (jal)
• Before:

1008 addi $ra,$zero,1016 #$ra=1016
1012 j sum #goto sum

• After:
1008 jal sum # $ra=1012,goto sum

• Why have a jal?
– Make the common case fast: function calls very common.
– Don’t have to know where code is in memory with jal!

19

MIPS Function Call Instructions

• Invoke function: jump and link instruction (jal)
(really should be laj “link and jump”)
– “link” means form an address or link that points to

calling site to allow function to return to proper address
– Jumps to address and simultaneously saves the address

of the following instruction in register $ra
jal FunctionLabel

• Return from function: jump register instruction (jr)
– Unconditional jump to address specified in register
jr $ra

20

Notes on Functions
• Calling program (caller) puts parameters into

registers $a0-$a3 and uses jal X to invoke
(callee) at address labeled X

• Must have register in computer with address of
currently executing instruction
– Instead of Instruction Address Register (better name),

historically called Program Counter (PC)
– It’s a program’s counter; it doesn’t count programs!

• What value does jal X place into $ra? ????
• jr $ra puts address inside $ra back into PC

21

Where Are Old Register Values Saved
to Restore Them After Function Call?

• Need a place to save old values before call
function, restore them when return, and delete

• Ideal is stack: last-in-first-out queue
(e.g., stack of plates)
– Push: placing data onto stack
– Pop: removing data from stack

• Stack in memory, so need register to point to it
• $sp is the stack pointer in MIPS ($29)
• Convention is grow from high to low addresses

– Push decrements $sp, Pop increments $sp

22

Example
int Leaf
(int g, int h, int i, int j)

{
int f;
f = (g + h) – (i + j);
return f;

}
• Parameter variables g, h, i, and j in argument

registers $a0, $a1, $a2, and $a3, and f in $s0
• Assume need one temporary register $t0

23

Stack Before, During, After Function

24

• Need to save old values of $s0 and $t0

Contents of $s0

Contents of $t0

MIPS Code for Leaf()

25

Leaf: addi $sp,$sp,-8 # adjust stack for 2 items
sw $t0, 4($sp) # save $t0 for use afterwards
sw $s0, 0($sp) # save $s0 for use afterwards

add $s0,$a0,$a1 # f = g + h
add $t0,$a2,$a3 # t0 = i + j
sub $v0,$s0,$t0 # return value (g + h) – (i + j)

lw $s0, 0($sp) # restore register $s0 for caller
lw $t0, 4($sp) # restore register $t0 for caller
addi $sp,$sp,8 # adjust stack to delete 2 items
jr $ra # jump back to calling routine

What If a Function Calls a Function?
Recursive Function Calls?

• Would clobber values in $a0 to $a3 and $ra
• What is the solution?

26

Nested Procedures (1/2)

int sumSquare(int x, int y) {
return mult(x,x)+ y;
}

• Something called sumSquare, now
sumSquare is calling mult

• So there’s a value in $ra that sumSquare
wants to jump back to, but this will be
overwritten by the call to mult

27

Need to save sumSquare return address
before call to mult

Nested Procedures (2/2)

• In general, may need to save some other info in
addition to $ra.

• When a C program is run, there are 3 important
memory areas allocated:
– Static: Variables declared once per program, cease to

exist only after execution completes - e.g., C globals
– Heap: Variables declared dynamically via malloc
– Stack: Space to be used by procedure during

execution; this is where we can save register values

28

Optimized Function Convention
To reduce expensive loads and stores from spilling

and restoring registers, MIPS divides registers into
two categories:

1. Preserved across function call
– Caller can rely on values being unchanged
– $sp, $gp, $fp, “saved registers” $s0- $s7

2. Not preserved across function call
– Caller cannot rely on values being unchanged
– Return value registers $v0,$v1, Argument registers

$a0-$a3, “temporary registers” $t0-$t9,$ra
29

Clickers/Peer Instruction

• Which statement is FALSE?

30

B: jal saves PC+1 in $ra

C: The callee can use temporary registers
($ti) without saving and restoring them

D: The caller can rely on save registers ($si)
without fear of callee changing them

A: MIPS uses jal to invoke a function and
jr to return from a function

Allocating Space on Stack

• C has two storage classes: automatic and static
– Automatic variables are local to function and discarded

when function exits
– Static variables exist across exits from and entries to

procedures
• Use stack for automatic (local) variables that don’t

fit in registers
• Procedure frame or activation record: segment of

stack with saved registers and local variables
• Some MIPS compilers use a frame pointer ($fp) to

point to first word of frame

31

Stack Before, During, After Call

32

Using the Stack (1/2)

• So we have a register $sp which always
points to the last used space in the stack.

• To use stack, we decrement this pointer by
the amount of space we need and then fill it
with info.

• So, how do we compile this?
int sumSquare(int x, int y) {

return mult(x,x)+ y;
}

33

Using the Stack (2/2)

• Hand-compile
sumSquare:

addi $sp,$sp,-8 # space on stack
sw $ra, 4($sp) # save ret addr
sw $a1, 0($sp) # save y
add $a1,$a0,$zero # mult(x,x)
jal mult # call mult
lw $a1, 0($sp) # restore y
add $v0,$v0,$a1 # mult()+y
lw $ra, 4($sp) # get ret addr
addi $sp,$sp,8 # restore stack
jr $ra

mult: ...

int sumSquare(int x, int y) {
return mult(x,x)+ y; }

“push”

“pop”

34

Basic Structure of a Function

entry_label:
addi $sp,$sp, -framesize
sw $ra, framesize-4($sp) # save $ra
save other regs if need be

...

restore other regs if need be
lw $ra, framesize-4($sp) # restore $ra
addi $sp,$sp, framesize
jr $ra

Epilogue

Prologue

Body (call other functions…)

ra

memory

35

Where is the Stack in Memory?

• MIPS convention
• Stack starts in high memory and grows down

– Hexadecimal (base 16) : 7fff fffchex

• MIPS programs (text segment) in low end
– 0040 0000hex

• static data segment (constants and other static
variables) above text for static variables
– MIPS convention global pointer ($gp) points to static

• Heap above static for data structures that grow
and shrink ; grows up to high addresses

36

MIPS Memory Allocation

37

Register Allocation and Numbering

38

And in Conclusion…

• Functions called with jal, return with jr $ra.
• The stack is your friend: Use it to save anything you

need. Just leave it the way you found it!
• Instructions we know so far…

Arithmetic: add, addi, sub, addu, addiu, subu
Memory: lw, sw, lb, sb
Decision: beq, bne, slt, slti, sltu, sltiu
Unconditional Branches (Jumps): j, jal, jr

• Registers we know so far
– All of them!
– $a0-$a3 for function arguments, $v0-$v1 for return values
– $sp, stack pointer, $fp frame pointer, $ra return address

39

Bonus Slides

40

Recursive Function Factorial
int fact (int n)

{

if (n < 1) return (1);

else return (n * fact(n-1));

}

41

Recursive Function Factorial
Fact:

adjust stack for 2 items
addi $sp,$sp,-8
save return address
sw $ra, 4($sp)
save argument n
sw $a0, 0($sp)
test for n < 1
slti $t0,$a0,1
if n >= 1, go to L1
beq $t0,$zero,L1
Then part (n==1) return 1
addi $v0,$zero,1
pop 2 items off stack
addi $sp,$sp,8
return to caller
jr $ra

L1:
Else part (n >= 1)
arg. gets (n – 1)
addi $a0,$a0,-1
call fact with (n – 1)
jal Fact
return from jal: restore n
lw $a0, 0($sp)
restore return address
lw $ra, 4($sp)
adjust sp to pop 2 items
addi $sp, $sp,8
return n * fact (n – 1)
mul $v0,$a0,$v0
return to the caller
jr $ra

42
mul is a pseudo instruction

	CS 61C: �Great Ideas in Computer Architecture �More MIPS, MIPS Functions
	Levels of Representation/Interpretation
	From last lecture …
	Review: Components of a Computer
	How Program is Stored
	Assembler to Machine Code�(more later in course)
	Executing a Program
	Review if-else Statement
	Control-flow Graphs: A visualization
	Clickers/Peer Instruction
	Administrivia
	CS61C In the News
	CS61C In the News pt. 2
	Six Fundamental Steps in �Calling a Function
	MIPS Function Call Conventions
	Instruction Support for Functions (1/4)
	Instruction Support for Functions (2/4)
	Instruction Support for Functions (3/4)
	Instruction Support for Functions (4/4)
	MIPS Function Call Instructions
	Notes on Functions
	Where Are Old Register Values Saved�to Restore Them After Function Call?
	Example
	Stack Before, During, After Function
	MIPS Code for Leaf()
	What If a Function Calls a Function? Recursive Function Calls?
	Nested Procedures (1/2)
	Nested Procedures (2/2)
	Optimized Function Convention
	Clickers/Peer Instruction
	Allocating Space on Stack
	Stack Before, During, After Call
	Using the Stack (1/2)
	Using the Stack (2/2)
	Basic Structure of a Function
	Where is the Stack in Memory?
	MIPS Memory Allocation
	Register Allocation and Numbering
	And in Conclusion…
	Bonus Slides
	Recursive Function Factorial
	Recursive Function Factorial

