
CS 61C:
Great Ideas in Computer Architecture

MIPS Instruction Formats

1

Instructors:

John Wawrzynek & Vladimir Stojanovic

http://inst.eecs.Berkeley.edu/~cs61c/fa15

Levels of
Representation/Interpretation

lw $t0, 0($2)
lw $t1, 4($2)
sw $t1, 0($2)
sw $t0, 4($2)

High Level Language
Program (e.g., C)

Assembly Language
Program (e.g., MIPS)

Machine Language
Program (MIPS)

Hardware Architecture Description
(e.g., block diagrams)

Compiler

Assembler

Machine
Interpretation

temp = v[k];
v[k] = v[k+1];
v[k+1] = temp;

0000 1001 1100 0110 1010 1111 0101 1000

1010 1111 0101 1000 0000 1001 1100 0110

1100 0110 1010 1111 0101 1000 0000 1001

0101 1000 0000 1001 1100 0110 1010 1111

Architecture
Implementation

Anything can be represented
as a number,

i.e., data or instructions

2

Logic Circuit Description
(Circuit Schematic Diagrams)

ENIAC (U.Penn., 1946)
First Electronic General-Purpose Computer

3

• Blazingly fast (multiply in 2.8ms!)

– 10 decimal digits x 10 decimal digits

• But needed 2-3 days to setup new program, as
programmed with patch cords and switches

Big Idea:
Stored-Program

Computer

– Instructions are represented as bit patterns - can think
of these as numbers

– Therefore, entire programs can be stored in memory
to be read or written just like data

– Can reprogram quickly (seconds), don’t have to rewire
computer (days)

– Known as the “von Neumann” computers after widely
distributed tech report on EDVAC project
• Wrote-up discussions of Eckert and Mauchly

• Anticipated earlier by Turing and Zuse

First Draft of a Report on the EDVAC
by

John von Neumann
Contract No. W–670–ORD–4926

Between the
United States Army Ordnance Department and the

University of Pennsylvania
Moore School of Electrical Engineering

University of Pennsylvania

June 30, 1945

4

EDSAC (Cambridge, 1949)
First General Stored-Program Computer

5

• Programs held as numbers in memory

• 35-bit binary 2’s complement words

Consequence #1: Everything Addressed

• Since all instructions and data are stored in memory,
everything has a memory address: instructions, data
words
– both branches and jumps use these

• C pointers are just memory addresses: they can point to
anything in memory
– Unconstrained use of addresses can lead to nasty bugs; up to

you in C; limited in Java by language design

• One register keeps address of instruction being executed:
“Program Counter” (PC)
– Basically a pointer to memory: Intel calls it Instruction Pointer (a

better name)

6

Consequence #2: Binary Compatibility

• Programs are distributed in binary form
– Programs bound to specific instruction set

– Different version for Macintoshes and PCs

• New machines want to run old programs (“binaries”)
as well as programs compiled to new instructions

• Leads to “backward-compatible” instruction set
evolving over time

• Selection of Intel 8086 in 1981 for 1st IBM PC is major
reason latest PCs still use 80x86 instruction set; could
still run program from 1981 PC today

7

Instructions as Numbers (1/2)

• Currently all data we work with is in words (32-bit
chunks):

– Each register is a word.

– lw and sw both access memory one word at a time.

• So how do we represent instructions?

– Remember: Computer only understands 1s and 0s, so
“add $t0,$0,$0” is meaningless.

– MIPS/RISC seeks simplicity: since data is in words,
make instructions be fixed-size 32-bit words also

8

Instructions as Numbers (2/2)

• One word is 32 bits, so divide instruction word
into “fields”.

• Each field tells processor something about
instruction.

• We could define different fields for each
instruction, but MIPS seeks simplicity, so define 3
basic types of instruction formats:
– R-format

– I-format

– J-format

9

Instruction Formats

• I-format: used for instructions with
immediates, lw and sw (since offset counts as
an immediate), and branches (beq and bne)

– (but not the shift instructions; later)

• J-format: used for j and jal

• R-format: used for all other instructions

• It will soon become clear why the instructions
have been partitioned in this way

10

R-Format Instructions (1/5)

• Define “fields” of the following number of bits
each: 6 + 5 + 5 + 5 + 5 + 6 = 32

• For simplicity, each field has a name:

• Important: On these slides and in book, each field is
viewed as a 5- or 6-bit unsigned integer, not as part of a
32-bit integer
– Consequence: 5-bit fields can represent any number 0-31, while

6-bit fields can represent any number 0-63

6 5 5 5 65

opcode rs rt rd functshamt

11

R-Format Instructions (2/5)

• What do these field integer values tell us?

– opcode: partially specifies what instruction it is

• Note: This number is equal to 0 for all R-Format
instructions

– funct: combined with opcode, this number
exactly specifies the instruction

12

• Question: Why aren’t opcode and funct a
single 12-bit field?

– We’ll answer this later

R-Format Instructions (3/5)

• More fields:
– rs (Source Register): usually used to specify

register containing first operand

– rt (Target Register): usually used to specify
register containing second operand (note that
name is misleading)

– rd (Destination Register): usually used to specify
register which will receive result of computation

13

R-Format Instructions (4/5)

• Notes about register fields:

– Each register field is exactly 5 bits, which means
that it can specify any unsigned integer in the
range 0-31. Each of these fields specifies one of
the 32 registers by number.

– The word “usually” was used because there are
exceptions that we’ll see later

14

R-Format Instructions (5/5)
• Final field:

– shamt: This field contains the amount a shift
instruction will shift by. Shifting a 32-bit word
by more than 31 is useless, so this field is only 5
bits (so it can represent the numbers 0-31)

– This field is set to 0 in all but the shift
instructions

• For a detailed description of field usage for
each instruction, see green insert in COD
(You can bring with you to all exams)

15

R-Format Example (1/2)
• MIPS Instruction:

add $8,$9,$10

opcode = 0 (look up in table in book)

funct = 32 (look up in table in book)

rd = 8 (destination)

rs = 9 (first operand)

rt = 10 (second operand)

shamt = 0 (not a shift)

16

R-Format Example (2/2)
• MIPS Instruction:

add $8,$9,$10

Decimal number per field representation:

Binary number per field representation:

hex representation: 012A 4020hex

Called a Machine Language Instruction

0 9 10 8 320

000000 01001 01010 01000 10000000000
hex

17

opcode rs rt rd functshamt

I-Format Instructions (1/4)

• What about instructions with immediates?
– 5-bit field only represents numbers up to the value 31:

immediates may be much larger than this

– Ideally, MIPS would have only one instruction format
(for simplicity): unfortunately, we need to
compromise

• Define new instruction format that is partially
consistent with R-format:
– First notice that, if instruction has immediate, then it

uses at most 2 registers.

18

I-Format Instructions (2/4)
• Define “fields” of the following number of bits each:

6 + 5 + 5 + 16 = 32 bits

– Again, each field has a name:

– Key Concept: Only one field is inconsistent with R-format.
Most importantly, opcode is still in same location.

6 5 5 16

opcode rs rt immediate

19

I-Format Instructions (3/4)
• What do these fields mean?

– opcode: same as before except that, since there’s no
funct field, opcode uniquely specifies an instruction in
I-format

– This also answers question of why R-format has two 6-bit
fields to identify instruction instead of a single 12-bit
field: in order to be consistent as possible with other
formats while leaving as much space as possible for
immediate field.

– rs: specifies a register operand (if there is one)

– rt: specifies register which will receive result of
computation (this is why it’s called the target register
“rt”) or other operand for some instructions.

20

I-Format Instructions (4/4)
• The Immediate Field:

– addi, slti, sltiu, the immediate is sign-
extended to 32 bits. Thus, it’s treated as a
signed integer.

– 16 bits  can be used to represent immediate
up to 216 different values

– This is large enough to handle the offset in a
typical lw or sw, plus a vast majority of values
that will be used in the slti instruction.

– Later, we’ll see what to do when a value is too
big for 16 bits

21

I-Format Example (1/2)

• MIPS Instruction:
addi $21,$22,-50

opcode = 8 (look up in table in book)

rs = 22 (register containing operand)

rt = 21 (target register)

immediate = -50 (by default, this is decimal in
assembly code)

22

I-Format Example (2/2)
• MIPS Instruction:

addi $21,$22,-50

8 22 21 -50

001000 10110 10101 1111111111001110

Decimal/field representation:

Binary/field representation:

hexadecimal representation: 22D5 FFCEhex

23

Clicker/Peer Instruction
Which instruction has same representation as integer 35ten?

a) add $0, $0, $0

b) subu $s0,$s0,$s0

c) lw $0, 0($0)

d) addi $0, $0, 35

e) subu $0, $0, $0

Registers numbers and names:
0: $0, .. 8: $t0, 9:$t1, ..15: $t7, 16: $s0, 17: $s1, .. 23: $s7

Opcodes and function fields:

add: opcode = 0, funct = 32
subu: opcode = 0, funct = 35
addi: opcode = 8
lw: opcode = 35

opcode rs rt offset

rd functshamtopcode rs rt

opcode rs rt immediate

rd functshamtopcode rs rt

rd functshamtopcode rs rt

24

Administrivia

• Project 1 due next Tuesday 9/22 @ 23:59:59

• Piazza – Top 1% of contributors will get full
EPA points!

• Piazza Etiquette

– Please don’t post code. We do not debug over
piazza. Come to OH instead!

– Search through other posts, FAQs before posting a
question

25

Branching Instructions

• beq and bne

– Need to specify a target address if branch taken

– Also specify two registers to compare

• Use I-Format:

– opcode specifies beq (4) vs. bne (5)

– rs and rt specify registers

– How to best use immediate to specify
addresses?

26

opcode rs rt immediate

31 0

Branching Instruction Usage

• Branches typically used for loops (if-else,
while, for)
– Loops are generally small (< 50 instructions)

– Function calls and unconditional jumps handled
with jump instructions (J-Format)

• Recall: Instructions stored in a localized area
of memory (Code/Text)
– Largest branch distance limited by size of code

– Address of current instruction stored in the
program counter (PC)

27

PC-Relative Addressing

• PC-Relative Addressing: Use the immediate
field as a two’s complement offset to PC

– Branches generally change the PC by a small
amount

– Can specify ± 215 addresses from the PC

28

Branch Calculation

• If we don’t take the branch:
– PC = PC + 4 = next instruction

• If we do take the branch:
– PC = (PC+4) + (immediate*4)

• Observations:
– immediate is number of instructions to jump

(remember, specifies words) either forward (+) or
backwards (–)

– Branch from PC+4 for hardware reasons; will be
clear why later in the course

29

Branch Example (1/2)

• MIPS Code:
Loop: beq $9,$0,End

addu $8,$8,$10

addiu $9,$9,-1

j Loop

End:

• I-Format fields:
opcode = 4 (look up on Green Sheet)

rs = 9 (first operand)

rt = 0 (second operand)

immediate = ???

30

Start counting from
instruction AFTER the
branch

1

2

3

3

Branch Example (2/2)

• MIPS Code:
Loop: beq $9,$0,End

addu $8,$8,$10

addiu $9,$9,-1

j Loop

End:

Field representation (decimal):

Field representation (binary):

31

4 9 0 3

31 0

000100 01001 00000 0000000000000011

31 0

Questions on PC-addressing

• Does the value in branch immediate field
change if we move the code?

– If moving individual lines of code, then yes

– If moving all of code, then no

• What do we do if destination is > 215

instructions away from branch?

– Other instructions save us
– beq $s0,$0,far bne $s0,$0,next

next instr  j far

next: # next instr
32

J-Format Instructions (1/4)

• For branches, we assumed that we won’t want
to branch too far, so we can specify a change
in the PC

• For general jumps (j and jal), we may jump
to anywhere in memory

– Ideally, we would specify a 32-bit memory address
to jump to

– Unfortunately, we can’t fit both a 6-bit opcode
and a 32-bit address into a single 32-bit word

33

J-Format Instructions (2/4)

• Define two “fields” of these bit widths:

• As usual, each field has a name:

• Key Concepts:

– Keep opcode field identical to R-Format and
I-Format for consistency

– Collapse all other fields to make room for large
target address 34

6 26

31 0

opcode target address

31 0

J-Format Instructions (3/4)

• We can specify 226 addresses

– Still going to word-aligned instructions, so add 0b00
as last two bits (multiply by 4)

– This brings us to 28 bits of a 32-bit address

• Take the 4 highest order bits from the PC

– Cannot reach everywhere, but adequate almost all of
the time, since programs aren’t that long

– Only problematic if code straddles a 256MB boundary

• If necessary, use 2 jumps or jr (R-Format)
instead

35

J-Format Instructions (4/4)

• Jump instruction:

– New PC = { (PC+4)[31..28], target address, 00 }

• Notes:

– { , , } means concatenation
{ 4 bits , 26 bits , 2 bits } = 32 bit address

• Book uses || instead

– Array indexing: [31..28] means highest 4 bits

– For hardware reasons, use PC+4 instead of PC

36

In the News: MIPS CPU that executes x86 and ARM

• China-based Loongson
– MIPS64 Release 3 instructions
– The binary translation to run x86 and ARM code – called ‘LoongBT’
– LoongVM instructions for custom virtual machines
– LoongSIMD instructions for 128- and 256-bit vector arithmetic operations

See more at: http://www.electronicsweekly.com/news/components/microprocessors-and-dsps/quad-core-64bit-mips-processors-
execute-arm-x86-instructions-2015-09/#sthash.bq66vrRQ.dpuf

37

Assembler Pseudo-Instructions

• Certain C statements are implemented
unintuitively in MIPS
– e.g. assignment (a=b) via add $zero

• MIPS has a set of “pseudo-instructions” to make
programming easier
– More intuitive to read, but get translated into actual

instructions later

• Example:
move dst,src

translated into
addi dst,src,0

38

Assembler Pseudo-Instructions

• List of pseudo-instructions:
http://en.wikipedia.org/wiki/MIPS_architecture#Pseudo_instructions

– List also includes instruction translation

• Load Address (la)
– la dst,label

– Loads address of specified label into dst

• Load Immediate (li)
– li dst,imm

– Loads 32-bit immediate into dst

• MARS has additional pseudo-instructions
– See Help (F1) for full list

39

http://en.wikipedia.org/wiki/MIPS_architecture

Assembler Register

• Problem:
– When breaking up a pseudo-instruction, the

assembler may need to use an extra register
– If it uses a regular register, it’ll overwrite whatever

the program has put into it

• Solution:
– Reserve a register ($1 or $at for “assembler

temporary”) that assembler will use to break up
pseudo-instructions

– Since the assembler may use this at any time, it’s
not safe to code with it

40

Dealing With Large Immediates

• How do we deal with 32-bit immediates?
– Sometimes want to use immediates > ± 215 with
addi, lw, sw and slti

– Bitwise logic operations with 32-bit immediates

• Solution: Don’t mess with instruction
formats, just add a new instruction

• Load Upper Immediate (lui)
– lui reg,imm

– Moves 16-bit imm into upper half (bits 16-31) of
reg and zeros the lower half (bits 0-15)

41

lui Example

• Want: addiu $t0,$t0,0xABABCDCD

– This is a pseudo-instruction!

• Translates into:
lui $at,0xABAB # upper 16

ori $at,$at,0xCDCD # lower 16

addu $t0,$t0,$at # move

• Now we can handle everything with a 16-bit
immediate!

42

Only the assembler gets to use $at ($1)

Multiply and Divide

• Example pseudo-instruction:
mul $rd,$rs,$rt

– Consists of mult which stores the output in special hi and
lo registers, and a move from these registers to $rd

mult $rs,$rt

mflo $rd

• mult and div have nothing important in the rd field
since the destination registers are hi and lo

• mfhi and mflo have nothing important in the rs and
rt fields since the source is determined by the
instruction (see COD)

43

MAL vs. TAL

• True Assembly Language (TAL)

– The instructions a computer understands and
executes

• MIPS Assembly Language (MAL)

– Instructions the assembly programmer can use
(includes pseudo-instructions)

– Each MAL instruction becomes 1 or more TAL
instruction

44

Clicker Question

Which of the following place the address of
LOOP in $v0?
1) la $t1, LOOP

lw $v0, 0($t1)

2) jal LOOP

LOOP: addu $v0, $ra, $zero

3) la $v0, LOOP

45

1 2 3

A)T, T, T

B)T, T, F

C)F, T, T

D)F, T, F

E)F, F, T

Summary

• I-Format: instructions with immediates,
lw/sw (offset is immediate), and beq/bne
– But not the shift instructions
– Branches use PC-relative addressing

• J-Format: j and jal (but not jr)
– Jumps use absolute addressing

• R-Format: all other instructions

46

opcode rs rt immediateI:

opcode target addressJ:

opcode functrs rt rd shamtR:

