CS 61C: Great Ideas in Computer
Architecture (Machine Structures)
Caches Part 1

Instructors:
John Wawrzynek & Vladimir Stojanovic
http://inst.eecs.berkeley.edu/~cs61c/

New-School Machine Structures
(It’s a bit more compllcated')

Software Hardware
Parallel Requests

Assigned to computer WarehSoCL;sl.(ee ¥
e.g., Search “Katz” Computer §
Parallel Threads Harness d
parallelism & "W 9° 5
Assigned to core Achieve Hig we know:

e.g., Lookup, Ads Performance

Parallel Instructions
>1 instruction @ one time
e.g., 5 pipelined instructions

Parallel Data

>1 data item @ one time
e.g., Add of 4 pairs of words

Hardware descriptions
All gates @ one time
ProgramminglLanguages

/ Loglc Gates

Components of a Computer

Processor

| l\;lil [SLETS:
e
T

Arithmetic]&}LogiclUnit Read

(ALU)

Enable?
Read/Write

Address

Write
Data

Data

\ J
Y \ J

Processor-Memory Interface

|/O-Memory Interfaces
3

Problem: Large memories slow?
Library Analogy

* Finding a book in a large library takes time

— Takes time to search a large card catalog — (mapping
title/author to index number)

— Round-trip time to walk to the stacks and retrieve the
desired book.
* Larger libraries makes both delays worse

* Electronic memories have the same issue, plus
the technologies that we use to store an
individual bit get slower as we increase density
(SRAM versus DRAM versus Magnetic Disk)

However what we want is a large yet fast memory!

Processor-DRAM Gap (latency)

UProc 60%/year
LO00 | oooemeommmm o N

100 |) Performance Gap:
(growing 50%/yr)

Performance

/7%/year
1 O 1 A MM < N ONOOO OO A a N < 1N ONOO OO
00 00 00O 00 O O 00 0O O 0 Oy O O O O O O Oy O O O
OO OO OO0 OO O OO OO OO O OO OO O OO OO OO OO O Oy O
™ = e e]] e N
Time

1980 microprocessor executes “oneinstruction in same time as DRAM access
2015 microprocessor executes ~1000 instructionsin same time as DRAM access

Slow DRAM access could have disastrous impact on CPU performal_gce!

What to do: Library Analogy

Want to write a report using library books
— E.g., works of J.D. Salinger

Go to Doe library, look up relevant books, fetch
from stacks, and place on desk in library

If need more, check them out and keep on desk
— But don’t return earlier books since might need them

You hope this collection of ~¥10 books on desk

enough to write report, despite 10 being only
0.00001% of books in UC Berkeley libraries

Big Idea: Memory Hierarchy

Processor

Inner Increasing
distance from
. Level 1 processor,
Levels in decreasing
memory / Level 2 speed
hierarchy Level 3
Outer

Level n

Size of memory at each level
As we move to outer levels the latency goes up

and price per bit goes down. Why?

Real Memory Reference Patterns

/= %r. T—— v -
—— — - ——
J6 —
’- PRt PTTE L Dl i
L o e
- . .
34 n v — — - R
PRI s e
32| - e
L . . ’ . 0 . . »
L nd WL O L ‘lf'lllnl '“‘lllllld(l'l" e l"l' llll ULIRL | "' ' = v —_— e e
=S f =Y B {n EUTAN YA ‘H‘ﬂﬂw Hﬁ‘lJ&l .
30‘ — %)IJL?II‘?. n ‘ ", 1Y } . '..‘- ” . X A =
L N T lfi ~e v ,n -J-sa- 1 4. -
}——F-*o- -~ . . - — W e

Memory Address (one dot per access

A o s e A
Slieas SEmeat., : i - W s PV AT AN YA NV, MV . .

- et Pl s oy s e & e e o S -

20' LI SEINE S A DIIE P 0 HARR A L L M L eT funsemeatim] @ - 4 -2 —_— “ie m*‘
- -
‘ "‘.- T E ‘w 3..0 -l‘"’-l-“a"" pa sty

ltrmmn;unmulmummmumnul s e |~ * e g ST S w*
il
18 L

Donald J. Hatfield, Jeanette Gerald: Program Restructuring for Virtual Time
Memory. IBM Systems Journal 10(3): 168-192 (1971)

Big Idea: Locality

e Temporal Locality (locality in time)

— Go back to same book on desktop multiple times

— If a memory location is referenced, then it will tend to
be referenced again soon

* Spatial Locality (locality in space)

— When go to book shelf, pick up multiple books on J.D.
Salinger since library stores related books together

— If a memory location is referenced, the locations with
nearby addresses will tend to be referenced soon

Memory Reference Patterns

Temporgi
Locality

Py — SERNS PN ST L1 : "“-"'“:.'::“‘la‘.?“"‘

T —rA LA —

Memory Address (one dot per access)

22 AR -
SRS Spatial

20' -~ DR OTIRLE SR e PEIE AP 3 MR MM L L MUB VLR e B e i B | - o2 - 4
‘; ou T R ' ,“q - _..! ,..OJ’ |‘P' Locallty
'l.tnmmvsunmulmummnmmuuu e e u-nm— | i -

18 %,

Donald J. Hatfield, Jeanette Gerald: Progryl[ne

Restructuring for Virtual Memory. IBM Systems
Tournal 10(3): 16R-192 (1971)

Principle of Locality

* Principle of Locality: Programs access small
portion of address space at any instant of time
(spatial locality) and repeatedly access that
portion (temporal locality)

* What program structureslead to temporal
and spatial locality in instruction accesses?

 |n data accesses?

11

Memory Reference Patterns

Address n loop iterations

Instruction
fetches

Stack
accesses

Data
accesses

subroutine subroutine

call

return
(o] (o]
/‘ e © © © o o 0\
(o]
° \ J (&) e o (o] (o]

argument access e © o0 o o
))

scalar accesses

~— N

e © o o o o o o Time

Cache Philosophy

* Programmer-invisible hardware mechanism to
give illusion of speed of fastest memory with
size of largest memory

— Works fine even if programmer has no idea what a
cache s

— However, performance-oriented programmers
today sometimes “reverse engineer” cache design
to design data structures to match cache

— We'll do that in Project 3

Memory Access without Cache

* Load word instruction: 1w $t0,0(S$St1l)
* Stl contains 1022, Memory[1022] = 99

s w N

Processorissues address 1022, to Memory
Memory reads word at address 1022,., (99)

Memory sends 99 to Processor
Processor loads 99 into register St0

14

Adding Cache to Computer

Processor
Enable?

Read/Write

| l\;lil [SLET S
e
| —

Arithmeticj&]LogiclUnit
(ALU)

g J \)

Processor-Memory Interface

|/O-Memory Interfaces
15

Memory Access with Cache

* Load word instruction: 1w St0,0(St1)
* Stl contains 1022, Memory[1022] =99

* With cache: Processor issues address 1022, to
Cache

1. Cache checks to see if has copy of data at address
1022,.,

2a. Iffinds a match (Hit): cache reads 99, sends to processor

2b. No match (Miss): cache sends address 1022 to Memory
l. Memory reads 99 at address 1022,
. Memory sends 99 to Cache
lIl. Cache replaces word with new 99
V. Cache sends 99 to processor

2. Processor loads 99 into register St0

16

Administrivia

HW2 due 10/16 @ 23:59:59

Project 3-1 due date now 10/21 — already released,
start early

Project 3-2 due date now 10/28 (release 10/18)

Midterm 1:

— grades posted today
— Stats, next slide

17

Version A

I T 2
0 10 20 30 40 50 60 70 80 90

MINIMUM MEDIAN MAXIMUM MEAN STD DEV

15.5 56.0 86.5 54.87 14.68

Version B

T T g
0 10 20 30 40 50 60 70 80 90

MINIMUM MEDIAN MAXIMUM MEAN STD DEV

14.0 55.0 90.0 54.75 15.2

Cache “Tags”

 Need way to tell if have copy of location in
memory so that can decide on hit or miss

* On cache miss, put memory address of block
in “tag address” of cache block

1022 placed in tag next to data from memory (99)

Tag Db

-
252 12 . From earlier
1022 99 instructions

131 7 ::::;;7’
2041 20

19

Anatomy of a
16 Byte Cache,
4 Byte Block

* Operations:

Processor

. 32-bit
1. Cache Hit Address

2. Cache Miss
3. Refill cache from
memory
 Cache needs Address
Tags to decide if
Processor Address is a
Cache Hit or Cache Miss

— Compares all 4 tags

Cache Replacement

Suppose processor now requests location 511, which
contains 117

Doesn’t match any cache block, so must “evict” one
resident block to make room

— Which block to evict?
Replace “victim” with new memory block at address 511

Tog Db

) 12
1022 99
511 11 ‘

2041 20 21

Block Must be Aligned in Memory

 Word blocks are aligned, so binary address of
all words in cache always ends in 00,,,,

* How to take advantage of this to save
nardware and energy?

* Don’t need to compare last 2 bits of 32-bit
oyte address (comparator can be narrower)

=> Don’t need to store last 2 bits of 32-bit byte
address in Cache Tag (Tag can be narrower)

22

Anatomy of a 32B
Cache, 8B Block Processor

* Blocks must be aligned
in pairs, otherwise
could get same word
twice in cache

=>Tags only have even-
numbered words

= Last 3 bits of address
always 000,,,,

=>Tags, comparators can
be narrower

* Can get hit for either
word in block

32-bit
Address

Hardware Cost of
Cache Processor

Need to compare every

tag to the Processor 32-bit
address Address

Comparators are
expensive

Optimization: use 2 Set 0
“sets” of data with a total
of only 2 comparators i

Y P Set 11

1 Address bit selects

which set
Compare only tags from 32-bit 32-bit
selected set Address Data

Generalize to more sets

Processor Address Fields used by

Cache Controller
Block Offset: Byte address within block

Set Index: Selects which set

Tag: Remaining portion of processor address
Processor Address (32-bits total)

<

>

Tag

Set Index

Block offset

Size of Index = log2 (number of sets)

Size of Tag = Address size — Size of Index

—log2 (humber of bytes/block)

25

What is limit to number of sets?

* For a given total number of blocks, we can
save more comparators if have more than 2

sets

e Limit: As Many Sets as Cache Blocks => only
one block per set —only needs one

comparator!

* Called “Direct-Mapped” Design

Tag

Index

Block offset

26

Direct Mapped Cache Ex:
Mapping a 6-bit Memory Address

5 4 3 2 1 0
Tag Index Byte Offset
Mem Block Within Block Within$S Byte Within Block
S Block

In example, blocksize is 4 bytes/1 word

Memory and cache blocks always the same size, unit of transfer between
memory and cache

Memory blocks >> # Cache blocks
— 16 Memory blocks = 16 words = 64 bytes => 6 bits to address all bytes
— 4 Cache blocks, 4 bytes (1 word) per block
— 4 Memory blocks map to each cache block

Memory block to cache block, aka index: middle two bits

Which memory block is in a given cache block, aka tag: top two bits

27

One More Detail: Valid Bit

* When start a new program, cache does not
have valid information for this program

* Need an indicator whether this tag entry is
valid for this program
 Add a “valid bit” to the cache tag entry
0 => cache miss, even if by chance, address = tag

1 => cache hit, if processor address = tag

28

Caching: A Simple First Example

Cache

Index Valid Tag Data

0000xx

0001xx

Oxx

/]

0011xx

00 R

01 PP

10 |

11 S

Q: Is the memory blockin
cache?

Comparethe cache tagtothe
high-order 2 memory address
bits to tell if the memory
block is inthe cache
(provided valid bitis set)

0100xx

0101xx

0T]10xx

0111xx

1000xx

1001xx

Oxx

1011xx

1100xx

1101xx

Oxx

1111xx

Main Memory

One word blocks

Two low order bits (xx)
define the byte in the
block (32b words)

Q: Where inthe cache is
the mem block?

Use next 2 low-order
memory address bits—
the index—to determine
which cache block (i.e.,
modulo the number of
blocksin the cache)

29

Direct-Mapped Cache Example

 One word blocks, cache size = 1K words (or 4KB)

Byte offset
3130 1312 11 ... 210/

y

Valid bit 4 e e [Dat
ensures . Read
Something Inde>(<) Valid Tag Data data

useful in ! from
cache for | cache
this index | > — instead
1021 Of
Compare 103 memory
Tag with =20 .32 if a Hit
upper part of
Address to g\ Comparator
see if a Hit

What kind of locality are we taking advantage of?

30

Multiword-Block Direct-Mapped Cache

 Four words/block, cache size = 1K words
Byte offset

Hit 3130 ... 1312 11 ... 43210/ Data
X
A
Tag ~20 ~+s \2 Word offset
Index
Index Valid Tag < Data >
0
1
2
253
254
255
T20
! <
N
| ~

What kind of locality are we taking adva%tage of?

31

Cache Names for Each Organization

* “Fully Associative”: Block can go anywhere

— First design in lecture
— Note: No Indexfield, but 1 comparator/block

* “Direct Mapped”: Block goes one place
— Note: Only 1 comparator
— Number of sets = number blocks

* “N-way Set Associative”: N places for a block
— Number of sets = number of blocks / N
— N comparators
— Fully Associative: N = number of blocks
— Direct Mapped: N = 1

32

Range of Set-Associative Caches

* For a fixed-size cache, and a given block size, each
increase by a factor of 2 in associativity doubles the
number of blocks per set (i.e., the number of “ways”)
and halves the number of sets —

* decreases the size of the index by 1 bit and
increases the size of the tag by 1 bit

More Associativity (more ways)

é
Tag ‘ Index

Block offset

What if we can also change the block size?

33

Clickers/Peer Instruction

For a cache with constant total capacity, if we
increase the number of ways by a factor of 2,
which statement is false:

A: T
B: T

C
D: T
E

ne bloc

ne bloc
ag widt

he tag width coula

K size coulc

K size coulo

ne number of sets could be doubled

decrease

stay the same
be halved

N Mmustincrease

Total Cash Capacity =
Associativity * # of sets * block_size
Bytes = blocks/set * sets * Bytes/block

C=N*S *B

Tag Index Byte Offset

address_size = tag_size + index_size + offset_size
= tag_size + log2(S) + log2(B)

Clicker Question: C remains constant,Sand/orB can change such that
C=2N * (SB) => (SB) = SB/2
Tag_size = address_size—(log2(S) + log2(B)) = address_size—log2(SB)
= address_size—(log2(SB) —1)

Typical Memory Hierarchy__

- ’

On-Chip Components - -
Control -
.-+~ | Third-
"~ Level _
_ Second- — Main Secondary
- Memory Memory
- Level (SRAM) :
Datapath [Cache (DRAM) (Disk
g Or Flash)
o
Speed (cycles): %'s 1’s 10’s 100’s 1,000,000’s
Size (bytes): 100’s 10K’s M’s G’s T’s
Cost/bit: highest < —> lowest

* Principle of locality + memory hierarchy presents programmer with
= as much memory as is availablein the cheapest technology at the
= speed offered by the fastesttechnology

36

Handling Stores with Write-Through

e Store instructions write to memory, changing
values

* Need to make sure cache and memory have same
values on writes: 2 policies

1) Write-Through Policy: write cache and write
through the cache to memory
— Every write eventually gets to memory

— Too slow, so include Write Buffer to allow processor to
continue once data in Buffer

— Buffer updates memory in parallel to processor

37

Write-Through
Cache Processor

Write both values in
cache and in memory

Write buffer stops CPU
from stalling if memory
cannot keep up

Write buffer may have
multiple entries to
absorb bursts of writes

What if store misses in T 1
h 5 32-bit -
cacher: Address

32-bit
Address

Handling Stores with Write-Back

2) Write-Back Policy: write only to cache and
then write cache block back to memory when
evict block from cache

— Writes collected in cache, only single write to
memory per block

— Include bit to see if wrote to block or not, and
then only write back if bit is set
e Called “Dirty” bit (writing makes it “dirty”)

39

Write-Back
Cache Processor

Store/cache hit, write datain 3.t
cache only & set dirty bit Address

— Memory hasstalevalue 7777777 Cache T T T

Store/cache miss, read data
from memory, then update
and set dirty bit

— “Write-allocate” policy

Load/cache hit, use value
from cache

On any miss, write back mssssfussssssssascssssssassansosnnns
evicted block, only if dirty.
Update cache with new block
and clear dirty bit.

Write-Through vs. Write-Back

* Write-Through: Write-Back

— Simpler controllogic — More complex controllogic

— More predictabletiming — More variable timing (0,1,2
simplifies processor control memory accesses per
logic cache access)

— Easier to make reliable, since — Usually reduces write
memory always has copy of traffic
data (big idea: Redundancy!) — Harder to make reliable,

sometimes cache has only
copy of data

41

And In Conclusion, ...

Principle of Locality for Libraries /Computer
Memory

Hierarchy of Memories (speed/size/cost per
bit) to Exploit Locality

Cache — copy of data lower level in memory
hierarchy

Direct Mapped to find block in cache using Tag
field and Valid bit for Hit

Cache design choice:

* Write-Through vs. Write-Back

