
CS	61C:	Great	Ideas	in	Computer	
Architecture	(Machine	Structures)

Caches	Part	2

Instructors:
John	Wawrzynek &	Vladimir	Stojanovic
http://inst.eecs.berkeley.edu/~cs61c/



Second-
Level
Cache
(SRAM)

Typical	Memory	Hierarchy

Control

Datapath

Secondary
Memory
(Disk

Or	Flash)

On-Chip	Components

RegFile

Main
Memory
(DRAM)Data

Cache
Instr
Cache

Speed	(cycles):								½’s												 1’s																	 10’s												 100’s							 1,000,000’s

Size	(bytes):				 100’s			 10K’s	 																								M’s																				G’s																						T’s

2

• Principle	of	locality	+	memory	hierarchy	presents	programmer	with	
≈	as	much	memory	as	is	available	in	the	cheapest technology	at	the	
≈	speed	offered	by	the	fastest technology

Cost/bit:									highest																																																																													 lowest

Third-
Level
Cache
(SRAM)



Processor

Control

Datapath

Review:	Adding	Cache	to	Computer

3

PC

Registers

Arithmetic	&	Logic	Unit
(ALU)

Memory
Input

Output

Bytes

Enable?
Read/Write

Address

Write	
Data

Read
Data

Processor-Memory	 Interface I/O-Memory	Interfaces

Program

Data

Cache



00000
00001
00010
00011
00100
00101
00110
00111
01000
01001
01010
01011
01100
01101
01110
01111
10000
10001
10010
10011
10100
10101
10110
10111
11000
11001
11010
11011
11100
11101
11110
11111

00000
00001
00010
00011
00100
00101
00110
00111
01000
01001
01010
01011
01100
01101
01110
01111
10000
10001
10010
10011
10100
10101
10110
10111
11000
11001
11010
11011
11100
11101
11110
11111

00000
00001
00010
00011
00100
00101
00110
00111
01000
01001
01010
01011
01100
01101
01110
01111
10000
10001
10010
10011
10100
10101
10110
10111
11000
11001
11010
11011
11100
11101
11110
11111

8 88
Byte

Word
8-Byte 
Block

address address address

2 LSBs are 0 3 LSBs are 0

0

1

2

3

0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7

Byte offset in block
Block #10/20/15 4

Memory	Block-addressing	example



010100100000

010100110000

010101000000

010101010000

010101100000

010101110000

010110000000

010110010000

010110100000

010110110000

010100100000

010100110000

010101000000

010101010000

010101100000

010101110000

010110000000

010110010000

010110100000

010110110000

82

83

84

85

86

87

88

89

90

91

2

3

4

5

6

7

0

1

2

3

0

1

0

1

0

1

0

1

0

1

010100100000

010100110000

010101000000

010101010000

010101100000

010101110000

010110000000

010110010000

010110100000

010110110000

Block	number	aliasing	example

10/20/15 5

Block	# Block	#	mod	8 Block	#	mod	2

12-bit	memory	addresses,	16	Byte	blocks



Caches	Review

6

• Principle	of	Locality
• Temporal	Locality	and	Spatial	Locality

• Hierarchy	of	Memories	(speed/size/cost	per	
bit)	to	Exploit	Locality

• Cache	– copy	of	data	in	lower	level	of	memory	
hierarchy

• Direct	Mapped	to	find	block	in	cache	using	Tag	
field	and	Valid	bit	for	Hit

• Cache	design	organization	choices:
• Fully	Associative,	Set-Associative,	Direct-

Mapped



Cache	Organizations
• “Fully	Associative”:	Block	can	go	anywhere
– First	design	in	lecture
– Note:	No	Index	field,	but	1	comparator/block

• “Direct	Mapped”:	Block	goes	one	place	
– Note:	Only	1	comparator
– Number	of	sets	=	number	blocks

• “N-way	Set	Associative”:	N	places	for	a	block
– Number	of	sets	=	number	of	blocks	/	N
– N	comparators
– Fully	Associative:	N	=	number	of	blocks
– Direct	Mapped:	N	=	1

7



Processor	Address	Fields	used	by	
Cache	Controller

• Block	Offset:	Byte	address	within	block
• Set	Index:	Selects	which	set
• Tag:	Remaining	portion	of	processor	address

• Size	of	Index	=	log2	(number	of	sets)
• Size	of	Tag	=	Address	size	– Size	of	Index	
– log2	(number	of	bytes/block)

Block offsetSet	IndexTag

8

Processor	Address	(32-bits	total)



• One	word	blocks,	cache	size	=	1K	words	(or	4KB)

Direct-Mapped	Cache	Review

20Tag 10
Index

DataIndex TagValid
0
1
2
.
.
.

1021
1022
1023

31	30			 				 .	.	.							 13	12		11					 .	.	.							 2		1		0
Byte	offset

20

Data

32

Hit

9

Valid	bit	
ensures	

something	
useful	in	
cache	for	
this	index

Compare	
Tag	with	

upper	part	of	
Address	 to	
see	if	a	Hit

Read
data	
from	
cache	
instead	

of	
memory	
if	a	Hit

Comparator



Four-Way	Set-Associative	Cache
• 28 =	256	sets	each	with	four	ways	(each	with	one	block)

31	30			 				 .	.	.								 				 				13	12		11					.	.	.					 				 		2		1		0 Byte	offset

DataTagV
0
1
2
.
.
.

253
254
255

DataTagV
0
1
2
.
.
.

253
254
255

DataTagV
0
1
2
.
.
.

253
254
255

Set	Index

DataTagV
0
1
2
.
.
.

253
254
255

8
Index

22Tag

Hit Data

32

4x1	select

Way	0 Way	1 Way	2 Way	3

10



Handling	Stores	with	Write-Through

• Store	instructions	write	to	memory,	changing	
values

• Need	to	make	sure	cache	and	memory	have	same	
values	on	writes:	2	policies

1)	Write-Through	Policy:	write	cache	and	write	
through	the	cache	to	memory
– Every	write	eventually	gets	to	memory
– Too	slow,	so	include	Write	Buffer	to	allow	processor	to	
continue	once	data	in	Buffer

– Buffer	updates	memory	in	parallel	to	processor

11



Write-Through	
Cache

• Write	both	values	in	
cache	and	in	memory

• Write	buffer	stops	CPU	
from	stalling	if	memory	
cannot	keep	up

• Write	buffer	may	have	
multiple	entries	to	
absorb	bursts	of	writes

• What	if	store	misses	in	
cache?

12

Processor

32-bit
Address

32-bit
Data

Cache

32-bit
Address

32-bit
Data

Memory

1022 99
252

7
20

12

131
2041 Addr Data

Write	
Buffer



Handling	Stores	with	Write-Back

2)	Write-Back	Policy:	write	only	to	cache	and	
then	write	cache	block	back	to	memory	when	
evict	block	from	cache
–Writes	collected	in	cache,	only	single	write	to	
memory	per	block

– Include	bit	to	see	if	wrote	to	block	or	not,	and	
then	only	write	back	if	bit	is	set
• Called	“Dirty”	bit	(writing	makes	it	“dirty”)

13



Write-Back	
Cache

• Store/cache	hit,	write	data	in	
cache	only	&	set	dirty	bit
– Memory	has	stale	value

• Store/cache	miss,	read	data	
from	memory,	then	update	
and	set	dirty	bit
– “Write-allocate”	policy

• Load/cache	hit,	use	value	
from	cache

• On	any	miss,	write	back	
evicted	block,	only	if	dirty.	
Update	cache	with	new	block	
and	clear	dirty	bit.

14

Processor

32-bit
Address

32-bit
Data

Cache

32-bit
Address

32-bit
Data

Memory

1022 99
252

7
20

12

131
2041

D
D
D
D

Dirty	
Bits



Write-Through	vs.	Write-Back

• Write-Through:
– Simpler	control	logic
– More	predictable	timing	
simplifies	processor	control	
logic

– Easier	to	make	reliable,	since	
memory	always	has	copy	of	
data	(big	idea:	Redundancy!)

• Write-Back
– More	complex	control	logic
– More	variable	timing	(0,1,2	
memory	accesses	per	
cache	access)

– Usually	reduces	write	
traffic

– Harder	to	make	reliable,	
sometimes	cache	has	only	
copy	of	data

15



Administrivia
• Project	3-1	due	date	Wednesday	10/21.	
• Project	3-2	due	date	now	10/28	(release	10/21)

• Midterm	1:	
– grades	posted

16



Cache	(Performance) Terms

• Hit	rate:	fraction	of	accesses	that	hit	in	the	cache
• Miss	rate:	1	– Hit	rate
• Miss	penalty:	time	to	replace	a	block	from	lower	
level	in	memory	hierarchy	to	cache

• Hit	time:	time	to	access	cache	memory	(including	
tag	comparison)

• Abbreviation:	“$”	=	cache	(A	Berkeley	innovation!)

17



Average	Memory	Access	Time	(AMAT)
• Average	Memory	Access	Time	(AMAT)	is	the	
average	time	to	access	memory	considering	
both	hits	and	misses	in	the	cache

AMAT	=		 Time	for	a	hit		
+		Miss	rate	× Miss	penalty

18



B:		400	psec

C:		600	psec

A:		≤200	psec☐

☐

☐

☐

19

Clickers/Peer	instruction
AMAT	=		Time	for	a	hit		+		Miss	rate	x Miss	penalty

Given	a	200	psec clock,	a	miss	penalty	of	50	clock	
cycles,	a	miss	rate	of	0.02	misses	per	instruction	and	
a	cache	hit	time	of	1	clock	cycle,	what	is	AMAT?



Example:	Direct-Mapped	Cache
with	4	Single-Word	Blocks,	Worst-Case	Reference	String

0 4 0 4

0 4 0 4

• Consider	the	main	memory	address	reference	string	of	word	
numbers:																														0			4			0			4			0			4			0			4

Start	with	an	empty	cache	- all	blocks	
initially	marked	as	not	valid

20



Example:	Direct-Mapped	Cache
with	4	Single-Word	Blocks,	Worst-Case	Reference	String

0 4 0 4

0 4 0 4

miss miss miss miss

miss miss miss miss

00				Mem(0) 00				Mem(0)
01 4

01				Mem(4)
000

00				Mem(0)
01 4

00				Mem(0)
01 4

00				Mem(0)
01 4

01				Mem(4)
000

01				Mem(4)
000

Start	with	an	empty	cache	- all	blocks	
initially	marked	as	not	valid

• Ping-pong effect	due	to	conflict	misses	- two	memory	
locations	that	map	into	the	same	cache	block

• 8	requests,	8	misses

21

• Consider	the	main	memory	address	reference	string	of	word	
numbers:																														0			4			0			4			0			4			0			4



Alternative	Block	Placement	Schemes

• DM	placement:	mem block	12	in	8	block	cache:	only	one	cache	
block	where	mem block	12	can	be	found—(12	modulo	8)	=	4

• SA	placement:	four	sets	x 2-ways	(8	cache	blocks),	memory	block	12	
in	set	(12	mod	4)	=	0;	either	element	of	the	set

• FA	placement:	mem block	12	can	appear	in	any	cache	blocks
22



Example:	2-Way	Set	Associative	$
(4	words	=	2	sets	x	2	ways	per	set)

0

Cache

Main	Memory

Q:	How	do	we	find	it?

Use	next	1	low	order	
memory	address	bit	to	
determine	which	cache	
set	(i.e.,	modulo	the	
number	of	sets	in	the	
cache)

Tag Data

Q:	Is	it	there?

Compare	all the	cache	
tags	in	the	set	to	the	high	
order	3	memory	address	
bits to	tell	if	the	memory	
block	is	in	the	cache

V

0000xx
0001xx
0010xx
0011xx
0100xx
0101xx
0110xx
0111xx
1000xx
1001xx
1010xx
1011xx
1100xx
1101xx
1110xx
1111xx

Set

1

0
1

Way

0

1

One	word	blocks
Two	low	order	bits	
define	 the	byte	in	the	
word	(32b	words)

23



Example:	4	Word	2-Way	SA	$
Same	Reference	String

0 4 0 4

• Consider	the	main	memory	word	reference	string
0			4			0			4			0			4			0			4Start	with	an	empty	cache	- all	blocks	

initially	marked	as	not	valid

24



Example:	4-Word	2-Way	SA	$
Same	Reference	String

0 4 0 4

• Consider	the	main	memory	address	reference	string
0			4			0			4			0			4			0			4

miss miss hit hit

000				Mem(0) 000				Mem(0)

Start	with	an	empty	cache	- all	blocks	
initially	marked	as	not	valid

010				Mem(4) 010				Mem(4)

000				Mem(0) 000				Mem(0)

010				Mem(4)

• Solves	the	ping-pongeffect	in	a	direct-mapped	cache	due	to	
conflict	misses	since	now	two	memory	locations	that	map	into	
the	same	cache	set	can	co-exist!

• 8	requests,	2	misses

25



Four-Way	Set-Associative	Cache
• 28 =	256	sets	each	with	four	ways	(each	with	one	block)

31	30			 				 .	.	.								 				 				13	12		11					.	.	.					 				 		2		1		0 Byte	offset

DataTagV
0
1
2
.
.
.

253
254
255

DataTagV
0
1
2
.
.
.

253
254
255

DataTagV
0
1
2
.
.
.

253
254
255

Index DataTagV
0
1
2
.
.
.

253
254
255

8
Index

22Tag

Hit Data

32

4x1	select

Way	0 Way	1 Way	2 Way	3

26



Different	Organizations	of	an	Eight-Block	Cache

Total	size	of	$	in	blocks	is	equal	to	
number	of	sets	× associativity.	For	
fixed	$	size	and	fixed	block	size,	
increasing associativity	decreases	
number	of	sets	while	increasing	
number	of	elements	per	set.	With	
eight	blocks,	an	8-way	set-
associative	$	is	same	as	a	fully	
associative	$.	

27



Range	of	Set-Associative	Caches
• For	a	fixed-size	cache	and	fixed	block	size,	each	
increase	by	a	factor	of	two	in	associativity	doubles	the	
number	of	blocks	per	set	(i.e.,	the	number	or	ways)	
and	halves	the	number	of	sets	– decreases	the	size	of	
the	index	by	1	bit	and	increases	the	size	of	the	tag	by	1	
bit

Word	offset Byte	offsetIndexTag

28



Range	of	Set-Associative	Caches
• For	a	fixed-size	cache	and	fixed	block	size,	each	
increase	by	a	factor	of	two	in	associativity	doubles	the	
number	of	blocks	per	set	(i.e.,	the	number	or	ways)	
and	halves	the	number	of	sets	– decreases	the	size	of	
the	index	by	1	bit	and	increases	the	size	of	the	tag	by	1	
bit

Word	offset Byte	offsetIndexTag

Decreasing	associativity

Fully	associative
(only	one	set)
Tag	is	all	the	bits	except
block	and	byte	offset

Direct	mapped
(only	one	way)
Smaller	tags,	only	a	
single	comparator

Increasing	associativity

Selects	the	setUsed	for	tag	compare Selects	the	word	in	the	block

29



Total	Cache	Capacity	=

30

Associativity		× #	of	sets		× block_size
Bytes	=	blocks/set		× sets		× Bytes/block	

Byte	OffsetTag Index

C	=	N		× S		× B

address_size =	tag_size +	index_size +	offset_size
=	tag_size +	log2(S)	+	log2(B)



Clickers/Peer	Instruction
• For	a	cache	with	constant	total	capacity,	 if	we	
increase	the	number	of	ways	by	a	factor	of	2,	
which	statement	is	false:

• A:	The	number	of	sets	could	be	doubled
• B:	The	tag	width	could	decrease
• C:	The	block	size	could	stay	the	same
• D:	The	block	size	could	be	halved
• E:		Tag	width	must	increase

31



Total	Cache	Capacity	=

32

Associativity		× #	of	sets		× block_size

Bytes	=	blocks/set		× sets		× Bytes/block	

Byte	OffsetTag Index

C	=	N		× S		× B

Clicker	Question:		C	remains	constant,	S	and/or	B	can	change	such	that	
C	=	2N	*	(SB)’	=>	(SB)’	=	SB/2

Tag_size =	address_size – (log2(S)	+	log2(B))	=	address_size – log2(SB)
=	address_size – log2(SB/2)	
=	address_size – (log2(SB)	– 1)

address_size =	tag_size +	index_size +	offset_size
=	tag_size +	log2(S)	+	log2(B)



Costs	of	Set-Associative	Caches
• N-way	set-associative	cache	costs
– N	comparators	(delay	and	area)
– MUX	delay	(set	selection)	before	data	is	available
– Data	available	after	set	selection	(and	Hit/Miss	decision).			
DM	$:	block	is	available	before	the	Hit/Miss	decision
• In	Set-Associative,	not	possible	to	just	assume	a	hit	and	continue	
and	recover	later	if	it	was	a	miss

• When	miss	occurs,	which	way’s	block	selected	for	
replacement?
– Least	Recently	Used	(LRU):	one	that	has	been	unused	the	
longest	(principle	of	temporal	locality)
• Must	track	when	each	way’s	block	was	used	relative	to	other	
blocks	in	the	set

• For	2-way	SA	$,	one	bit	per	set	→	set	to	1	when	a	block	is	
referenced;	reset	the	other	way’s	bit	(i.e.,	“last	used”)

33



Cache	Replacement	Policies
• Random	Replacement

– Hardware	randomly	selects	a	cache	evict
• Least-Recently	Used

– Hardware	keeps	track	of	access	history
– Replace	the	entry	that	has	not	been	used	for	the	longest	time
– For	2-way	set-associative	cache,	need	one	bit	for	LRU	replacement

• Example	of	a	Simple	“Pseudo”	LRU	Implementation
– Assume	64	Fully	Associative	entries
– Hardware	replacement	pointer	points	to	one	cache	entry
– Whenever	access	is	made	to	the	entry	the	pointer	points	to:

• Move	the	pointer	to	the	next	entry
– Otherwise:	do	not	move	the	pointer
– (example	of	“not-most-recently	used”	replacement	policy)

:

Entry	0
Entry	1

Entry		63

Replacement
Pointer

34



Benefits	of	Set-Associative	Caches
• Choice	of	DM	$	versus	SA	$	depends	on	the	cost	of	a	miss	

versus	the	cost	of	implementation

• Largest	gains	are	in	going	from	direct	mapped	to	2-way	
(20%+	reduction	in	miss	rate)

35



Understanding	Cache	Misses:
The	3Cs

• Compulsory	(cold	start	or	process	migration,	1st reference):
– First	access	to	block	impossible	to	avoid;	small	effect	for	long	

running	programs
– Solution:	increase	block	size	(increases	miss	penalty;	very	large	

blocks	could	increase	miss	rate)
• Capacity:

– Cache	cannot	contain	all	blocks	accessed	by	the	program
– Solution:	increase	cache	size	(may	increase	access	time)

• Conflict	(collision):
– Multiple	memory	locations	mapped	to	the	same	cache	location
– Solution	1:	increase	cache	size
– Solution	2:	increase	associativity (may	increase	access	time)

36



How	to	Calculate	3C’s	using	Cache	
Simulator

1. Compulsory:	set	cache	size	to	infinity	and	fully	
associative,	and	count	number	of	misses

2. Capacity:	Change	cache	size	from	infinity,	usually	
in	powers	of	2,	and	count	misses	for	each	
reduction	in	size
– 16	MB,	8	MB,	4	MB,	…	128	KB,	64	KB,	16	KB

3. Conflict:	Change	from	fully	associative	to	n-way	
set	associative	while	counting	misses
– Fully	associative,	16-way,	8-way,	4-way,	2-way,	1-way

37



3Cs	Analysis

• Three	sources	of	misses	(SPEC2000	integer	and	floating-point	
benchmarks)
– Compulsory	misses	0.006%;	not	visible
– Capacity	misses,	function	of	cache	size
– Conflict	portion	depends	on	associativity and	cache	size 38



Improving	Cache	Performance

• Reduce	the	time	to	hit	in	the	cache
– E.g.,	Smaller	cache

• Reduce	the	miss	rate
– E.g.,	Bigger	cache

• Reduce	the	miss	penalty
– E.g.,	Use	multiple	cache	levels

39

AMAT	=		Time	for	a	hit		+		Miss	rate	x	Miss	penalty



Impact	of	Larger	Cache	on	AMAT?
• 1)	Reduces	misses	(what	kind(s)?)
• 2)	Longer	Access	time	(Hit	time):	smaller	is	faster	
– Increase	in	hit	time	will	likely	add	another	stage	to	the	
pipeline	

• At	some	point,	increase	in	hit	time	for	a	larger	
cache	may	overcome	the	improvement	in	hit	rate,	
yielding	a	decrease	in	performance

• Computer	architects	expend	considerable	effort	
optimizing	organization	of	cache	hierarchy	– big	
impact	on	performance	and	power!

40



Clickers:	Impact	of	longer	cache	blocks	
on	misses?

• For	fixed	total	cache	capacity	and	associativity,	
what	is	effect	of	longer	blocks	on	each	type	of	
miss:
– A:	Decrease,	B:	Unchanged,	C:	Increase

• Compulsory?	
• Capacity?
• Conflict?

41



Clickers:	Impact	of	longer	blocks	on	
AMAT

• For	fixed	total	cache	capacity	and	associativity,	
what	is	effect	of	longer	blocks	on	each	
component	of	AMAT:
– A:	Decrease,	B:	Unchanged,	C:	Increase

• Hit	Time?
• Miss	Rate?
• Miss	Penalty?

42



Clickers/Peer	Instruction:
For	fixed	capacity	and	fixed	block	size,	how	
does	increasing	associativity	effect	AMAT?

43



Cache	Design	Space
• Several	interacting	dimensions

– Cache	size
– Block	size
– Associativity
– Replacement	policy
– Write-through	vs.	write-back
– Write	allocation

• Optimal	choice	is	a	compromise
– Depends	on	access	characteristics

• Workload
• Use	(I-cache,	D-cache)

– Depends	on	technology	/	cost
• Simplicity	often	wins

Associativity

Cache	Size

Block	Size

Bad

Good

Less More

Factor	A Factor	B

44



And,	In	Conclusion	…

• Name	of	the	Game:	Reduce	AMAT
–Reduce	Hit	Time
–Reduce	Miss	Rate
–Reduce	Miss	Penalty

• Balance	cache	parameters	(Capacity,	
associativity,	block	size)

45


