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• Principle	of	locality	+	memory	hierarchy	presents	programmer	with	
≈	as	much	memory	as	is	available	in	the	cheapest technology	at	the	
≈	speed	offered	by	the	fastest technology

Cost/bit:									highest																																																																													 lowest
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10/20/15 5

Block	# Block	#	mod	8 Block	#	mod	2

12-bit	memory	addresses,	16	Byte	blocks



Caches	Review
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• Principle	of	Locality
• Temporal	Locality	and	Spatial	Locality

• Hierarchy	of	Memories	(speed/size/cost	per	
bit)	to	Exploit	Locality

• Cache	– copy	of	data	in	lower	level	of	memory	
hierarchy

• Direct	Mapped	to	find	block	in	cache	using	Tag	
field	and	Valid	bit	for	Hit

• Cache	design	organization	choices:
• Fully	Associative,	Set-Associative,	Direct-

Mapped



Cache	Organizations
• “Fully	Associative”:	Block	can	go	anywhere
– First	design	in	lecture
– Note:	No	Index	field,	but	1	comparator/block

• “Direct	Mapped”:	Block	goes	one	place	
– Note:	Only	1	comparator
– Number	of	sets	=	number	blocks

• “N-way	Set	Associative”:	N	places	for	a	block
– Number	of	sets	=	number	of	blocks	/	N
– N	comparators
– Fully	Associative:	N	=	number	of	blocks
– Direct	Mapped:	N	=	1
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Processor	Address	Fields	used	by	
Cache	Controller

• Block	Offset:	Byte	address	within	block
• Set	Index:	Selects	which	set
• Tag:	Remaining	portion	of	processor	address

• Size	of	Index	=	log2	(number	of	sets)
• Size	of	Tag	=	Address	size	– Size	of	Index	
– log2	(number	of	bytes/block)

Block offsetSet	IndexTag

8

Processor	Address	(32-bits	total)



• One	word	blocks,	cache	size	=	1K	words	(or	4KB)

Direct-Mapped	Cache	Review
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Four-Way	Set-Associative	Cache
• 28 =	256	sets	each	with	four	ways	(each	with	one	block)
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Handling	Stores	with	Write-Through

• Store	instructions	write	to	memory,	changing	
values

• Need	to	make	sure	cache	and	memory	have	same	
values	on	writes:	2	policies

1)	Write-Through	Policy:	write	cache	and	write	
through	the	cache	to	memory
– Every	write	eventually	gets	to	memory
– Too	slow,	so	include	Write	Buffer	to	allow	processor	to	
continue	once	data	in	Buffer

– Buffer	updates	memory	in	parallel	to	processor

11



Write-Through	
Cache

• Write	both	values	in	
cache	and	in	memory

• Write	buffer	stops	CPU	
from	stalling	if	memory	
cannot	keep	up

• Write	buffer	may	have	
multiple	entries	to	
absorb	bursts	of	writes

• What	if	store	misses	in	
cache?
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Handling	Stores	with	Write-Back

2)	Write-Back	Policy:	write	only	to	cache	and	
then	write	cache	block	back	to	memory	when	
evict	block	from	cache
–Writes	collected	in	cache,	only	single	write	to	
memory	per	block

– Include	bit	to	see	if	wrote	to	block	or	not,	and	
then	only	write	back	if	bit	is	set
• Called	“Dirty”	bit	(writing	makes	it	“dirty”)
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Write-Back	
Cache

• Store/cache	hit,	write	data	in	
cache	only	&	set	dirty	bit
– Memory	has	stale	value

• Store/cache	miss,	read	data	
from	memory,	then	update	
and	set	dirty	bit
– “Write-allocate”	policy

• Load/cache	hit,	use	value	
from	cache

• On	any	miss,	write	back	
evicted	block,	only	if	dirty.	
Update	cache	with	new	block	
and	clear	dirty	bit.
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Write-Through	vs.	Write-Back

• Write-Through:
– Simpler	control	logic
– More	predictable	timing	
simplifies	processor	control	
logic

– Easier	to	make	reliable,	since	
memory	always	has	copy	of	
data	(big	idea:	Redundancy!)

• Write-Back
– More	complex	control	logic
– More	variable	timing	(0,1,2	
memory	accesses	per	
cache	access)

– Usually	reduces	write	
traffic

– Harder	to	make	reliable,	
sometimes	cache	has	only	
copy	of	data

15



Administrivia
• Project	3-1	due	date	Wednesday	10/21.	
• Project	3-2	due	date	now	10/28	(release	10/21)

• Midterm	1:	
– grades	posted
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Cache	(Performance) Terms

• Hit	rate:	fraction	of	accesses	that	hit	in	the	cache
• Miss	rate:	1	– Hit	rate
• Miss	penalty:	time	to	replace	a	block	from	lower	
level	in	memory	hierarchy	to	cache

• Hit	time:	time	to	access	cache	memory	(including	
tag	comparison)

• Abbreviation:	“$”	=	cache	(A	Berkeley	innovation!)
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Average	Memory	Access	Time	(AMAT)
• Average	Memory	Access	Time	(AMAT)	is	the	
average	time	to	access	memory	considering	
both	hits	and	misses	in	the	cache

AMAT	=		 Time	for	a	hit		
+		Miss	rate	× Miss	penalty

18



B:		400	psec

C:		600	psec

A:		≤200	psec☐

☐

☐

☐
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Clickers/Peer	instruction
AMAT	=		Time	for	a	hit		+		Miss	rate	x Miss	penalty

Given	a	200	psec clock,	a	miss	penalty	of	50	clock	
cycles,	a	miss	rate	of	0.02	misses	per	instruction	and	
a	cache	hit	time	of	1	clock	cycle,	what	is	AMAT?



Example:	Direct-Mapped	Cache
with	4	Single-Word	Blocks,	Worst-Case	Reference	String

0 4 0 4

0 4 0 4

• Consider	the	main	memory	address	reference	string	of	word	
numbers:																														0			4			0			4			0			4			0			4

Start	with	an	empty	cache	- all	blocks	
initially	marked	as	not	valid
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Example:	Direct-Mapped	Cache
with	4	Single-Word	Blocks,	Worst-Case	Reference	String

0 4 0 4

0 4 0 4

miss miss miss miss

miss miss miss miss

00				Mem(0) 00				Mem(0)
01 4

01				Mem(4)
000

00				Mem(0)
01 4

00				Mem(0)
01 4

00				Mem(0)
01 4

01				Mem(4)
000

01				Mem(4)
000

Start	with	an	empty	cache	- all	blocks	
initially	marked	as	not	valid

• Ping-pong effect	due	to	conflict	misses	- two	memory	
locations	that	map	into	the	same	cache	block

• 8	requests,	8	misses
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• Consider	the	main	memory	address	reference	string	of	word	
numbers:																														0			4			0			4			0			4			0			4



Alternative	Block	Placement	Schemes

• DM	placement:	mem block	12	in	8	block	cache:	only	one	cache	
block	where	mem block	12	can	be	found—(12	modulo	8)	=	4

• SA	placement:	four	sets	x 2-ways	(8	cache	blocks),	memory	block	12	
in	set	(12	mod	4)	=	0;	either	element	of	the	set

• FA	placement:	mem block	12	can	appear	in	any	cache	blocks
22



Example:	2-Way	Set	Associative	$
(4	words	=	2	sets	x	2	ways	per	set)

0

Cache

Main	Memory

Q:	How	do	we	find	it?

Use	next	1	low	order	
memory	address	bit	to	
determine	which	cache	
set	(i.e.,	modulo	the	
number	of	sets	in	the	
cache)

Tag Data

Q:	Is	it	there?

Compare	all the	cache	
tags	in	the	set	to	the	high	
order	3	memory	address	
bits to	tell	if	the	memory	
block	is	in	the	cache

V

0000xx
0001xx
0010xx
0011xx
0100xx
0101xx
0110xx
0111xx
1000xx
1001xx
1010xx
1011xx
1100xx
1101xx
1110xx
1111xx

Set

1

0
1

Way

0

1

One	word	blocks
Two	low	order	bits	
define	 the	byte	in	the	
word	(32b	words)
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Example:	4	Word	2-Way	SA	$
Same	Reference	String

0 4 0 4

• Consider	the	main	memory	word	reference	string
0			4			0			4			0			4			0			4Start	with	an	empty	cache	- all	blocks	

initially	marked	as	not	valid

24



Example:	4-Word	2-Way	SA	$
Same	Reference	String

0 4 0 4

• Consider	the	main	memory	address	reference	string
0			4			0			4			0			4			0			4

miss miss hit hit

000				Mem(0) 000				Mem(0)

Start	with	an	empty	cache	- all	blocks	
initially	marked	as	not	valid

010				Mem(4) 010				Mem(4)

000				Mem(0) 000				Mem(0)

010				Mem(4)

• Solves	the	ping-pongeffect	in	a	direct-mapped	cache	due	to	
conflict	misses	since	now	two	memory	locations	that	map	into	
the	same	cache	set	can	co-exist!

• 8	requests,	2	misses
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Four-Way	Set-Associative	Cache
• 28 =	256	sets	each	with	four	ways	(each	with	one	block)
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.
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Index DataTagV
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2
.
.
.
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255

8
Index

22Tag

Hit Data
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4x1	select

Way	0 Way	1 Way	2 Way	3

26



Different	Organizations	of	an	Eight-Block	Cache

Total	size	of	$	in	blocks	is	equal	to	
number	of	sets	× associativity.	For	
fixed	$	size	and	fixed	block	size,	
increasing associativity	decreases	
number	of	sets	while	increasing	
number	of	elements	per	set.	With	
eight	blocks,	an	8-way	set-
associative	$	is	same	as	a	fully	
associative	$.	
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Range	of	Set-Associative	Caches
• For	a	fixed-size	cache	and	fixed	block	size,	each	
increase	by	a	factor	of	two	in	associativity	doubles	the	
number	of	blocks	per	set	(i.e.,	the	number	or	ways)	
and	halves	the	number	of	sets	– decreases	the	size	of	
the	index	by	1	bit	and	increases	the	size	of	the	tag	by	1	
bit

Word	offset Byte	offsetIndexTag

28



Range	of	Set-Associative	Caches
• For	a	fixed-size	cache	and	fixed	block	size,	each	
increase	by	a	factor	of	two	in	associativity	doubles	the	
number	of	blocks	per	set	(i.e.,	the	number	or	ways)	
and	halves	the	number	of	sets	– decreases	the	size	of	
the	index	by	1	bit	and	increases	the	size	of	the	tag	by	1	
bit

Word	offset Byte	offsetIndexTag

Decreasing	associativity

Fully	associative
(only	one	set)
Tag	is	all	the	bits	except
block	and	byte	offset

Direct	mapped
(only	one	way)
Smaller	tags,	only	a	
single	comparator

Increasing	associativity

Selects	the	setUsed	for	tag	compare Selects	the	word	in	the	block

29



Total	Cache	Capacity	=

30

Associativity		× #	of	sets		× block_size
Bytes	=	blocks/set		× sets		× Bytes/block	

Byte	OffsetTag Index

C	=	N		× S		× B

address_size =	tag_size +	index_size +	offset_size
=	tag_size +	log2(S)	+	log2(B)



Clickers/Peer	Instruction
• For	a	cache	with	constant	total	capacity,	 if	we	
increase	the	number	of	ways	by	a	factor	of	2,	
which	statement	is	false:

• A:	The	number	of	sets	could	be	doubled
• B:	The	tag	width	could	decrease
• C:	The	block	size	could	stay	the	same
• D:	The	block	size	could	be	halved
• E:		Tag	width	must	increase
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Total	Cache	Capacity	=

32

Associativity		× #	of	sets		× block_size

Bytes	=	blocks/set		× sets		× Bytes/block	

Byte	OffsetTag Index

C	=	N		× S		× B

Clicker	Question:		C	remains	constant,	S	and/or	B	can	change	such	that	
C	=	2N	*	(SB)’	=>	(SB)’	=	SB/2

Tag_size =	address_size – (log2(S)	+	log2(B))	=	address_size – log2(SB)
=	address_size – log2(SB/2)	
=	address_size – (log2(SB)	– 1)

address_size =	tag_size +	index_size +	offset_size
=	tag_size +	log2(S)	+	log2(B)



Costs	of	Set-Associative	Caches
• N-way	set-associative	cache	costs
– N	comparators	(delay	and	area)
– MUX	delay	(set	selection)	before	data	is	available
– Data	available	after	set	selection	(and	Hit/Miss	decision).			
DM	$:	block	is	available	before	the	Hit/Miss	decision
• In	Set-Associative,	not	possible	to	just	assume	a	hit	and	continue	
and	recover	later	if	it	was	a	miss

• When	miss	occurs,	which	way’s	block	selected	for	
replacement?
– Least	Recently	Used	(LRU):	one	that	has	been	unused	the	
longest	(principle	of	temporal	locality)
• Must	track	when	each	way’s	block	was	used	relative	to	other	
blocks	in	the	set

• For	2-way	SA	$,	one	bit	per	set	→	set	to	1	when	a	block	is	
referenced;	reset	the	other	way’s	bit	(i.e.,	“last	used”)
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Cache	Replacement	Policies
• Random	Replacement

– Hardware	randomly	selects	a	cache	evict
• Least-Recently	Used

– Hardware	keeps	track	of	access	history
– Replace	the	entry	that	has	not	been	used	for	the	longest	time
– For	2-way	set-associative	cache,	need	one	bit	for	LRU	replacement

• Example	of	a	Simple	“Pseudo”	LRU	Implementation
– Assume	64	Fully	Associative	entries
– Hardware	replacement	pointer	points	to	one	cache	entry
– Whenever	access	is	made	to	the	entry	the	pointer	points	to:

• Move	the	pointer	to	the	next	entry
– Otherwise:	do	not	move	the	pointer
– (example	of	“not-most-recently	used”	replacement	policy)

:

Entry	0
Entry	1

Entry		63

Replacement
Pointer

34



Benefits	of	Set-Associative	Caches
• Choice	of	DM	$	versus	SA	$	depends	on	the	cost	of	a	miss	

versus	the	cost	of	implementation

• Largest	gains	are	in	going	from	direct	mapped	to	2-way	
(20%+	reduction	in	miss	rate)
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Understanding	Cache	Misses:
The	3Cs

• Compulsory	(cold	start	or	process	migration,	1st reference):
– First	access	to	block	impossible	to	avoid;	small	effect	for	long	

running	programs
– Solution:	increase	block	size	(increases	miss	penalty;	very	large	

blocks	could	increase	miss	rate)
• Capacity:

– Cache	cannot	contain	all	blocks	accessed	by	the	program
– Solution:	increase	cache	size	(may	increase	access	time)

• Conflict	(collision):
– Multiple	memory	locations	mapped	to	the	same	cache	location
– Solution	1:	increase	cache	size
– Solution	2:	increase	associativity (may	increase	access	time)
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How	to	Calculate	3C’s	using	Cache	
Simulator

1. Compulsory:	set	cache	size	to	infinity	and	fully	
associative,	and	count	number	of	misses

2. Capacity:	Change	cache	size	from	infinity,	usually	
in	powers	of	2,	and	count	misses	for	each	
reduction	in	size
– 16	MB,	8	MB,	4	MB,	…	128	KB,	64	KB,	16	KB

3. Conflict:	Change	from	fully	associative	to	n-way	
set	associative	while	counting	misses
– Fully	associative,	16-way,	8-way,	4-way,	2-way,	1-way
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3Cs	Analysis

• Three	sources	of	misses	(SPEC2000	integer	and	floating-point	
benchmarks)
– Compulsory	misses	0.006%;	not	visible
– Capacity	misses,	function	of	cache	size
– Conflict	portion	depends	on	associativity and	cache	size 38



Improving	Cache	Performance

• Reduce	the	time	to	hit	in	the	cache
– E.g.,	Smaller	cache

• Reduce	the	miss	rate
– E.g.,	Bigger	cache

• Reduce	the	miss	penalty
– E.g.,	Use	multiple	cache	levels

39

AMAT	=		Time	for	a	hit		+		Miss	rate	x	Miss	penalty



Impact	of	Larger	Cache	on	AMAT?
• 1)	Reduces	misses	(what	kind(s)?)
• 2)	Longer	Access	time	(Hit	time):	smaller	is	faster	
– Increase	in	hit	time	will	likely	add	another	stage	to	the	
pipeline	

• At	some	point,	increase	in	hit	time	for	a	larger	
cache	may	overcome	the	improvement	in	hit	rate,	
yielding	a	decrease	in	performance

• Computer	architects	expend	considerable	effort	
optimizing	organization	of	cache	hierarchy	– big	
impact	on	performance	and	power!
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Clickers:	Impact	of	longer	cache	blocks	
on	misses?

• For	fixed	total	cache	capacity	and	associativity,	
what	is	effect	of	longer	blocks	on	each	type	of	
miss:
– A:	Decrease,	B:	Unchanged,	C:	Increase

• Compulsory?	
• Capacity?
• Conflict?
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Clickers:	Impact	of	longer	blocks	on	
AMAT

• For	fixed	total	cache	capacity	and	associativity,	
what	is	effect	of	longer	blocks	on	each	
component	of	AMAT:
– A:	Decrease,	B:	Unchanged,	C:	Increase

• Hit	Time?
• Miss	Rate?
• Miss	Penalty?
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Clickers/Peer	Instruction:
For	fixed	capacity	and	fixed	block	size,	how	
does	increasing	associativity	effect	AMAT?
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Cache	Design	Space
• Several	interacting	dimensions

– Cache	size
– Block	size
– Associativity
– Replacement	policy
– Write-through	vs.	write-back
– Write	allocation

• Optimal	choice	is	a	compromise
– Depends	on	access	characteristics

• Workload
• Use	(I-cache,	D-cache)

– Depends	on	technology	/	cost
• Simplicity	often	wins

Associativity

Cache	Size

Block	Size

Bad

Good

Less More

Factor	A Factor	B
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And,	In	Conclusion	…

• Name	of	the	Game:	Reduce	AMAT
–Reduce	Hit	Time
–Reduce	Miss	Rate
–Reduce	Miss	Penalty

• Balance	cache	parameters	(Capacity,	
associativity,	block	size)
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