CS 61C: Great Ideas in Computer
Architecture (Machine Structures)
Caches Part 3

Instructors:
John Wawrzynek & Vladimir Stojanovic
http://inst.eecs.berkeley.edu/~cs61c/

You Are Herel

Software Hardware
Parallel Requests

Assigned to computer

Warehouse &
Scale &

e.g., Search “Katz” Computer §
Harness
Parallel Threads 5 . iiclism &
Assigned to core Achieve High
e.g., Lookup, Ads Performance

Parallel Instructions
>1 instruction @ one time
e.g., 5 pipelined instructions

Parallel Data

>1 data item @ one time
e.g., Add of 4 pairs of words

Hardware descriptions
All gates @ one time
ProgramminglLanguages

i structlon Unit(s) Functional
paey Unit(s)

ettt
"ﬂmj /K;+BV(1+B}/K2+B 3+B/
il /,

I
Main Memory / e ','
I

/ :::?/ Logic Gates

Review from Last Lecture

* Cache Organization

* Cache Capacity

* Cache Addressing

* Cache write policies

 AMAT (average memory access time)

10/22/15

Different Organizations of an Eight-Block Cache

One-way set associative
(direct mapped)

Block Tag Data

0
; Two-way set associative
5 Set Tag Data Tag Data
3 0
a 1
. 2

Total size of S in blocks is equal to . 3

number of sets x associativity. For

fixed S size and fixed block size, 7

increasing associativity decreases
number of sets while increasing

number of elements per set. With | Set Tag Data Tag Data Tag Data Tag Data
eight blocks, an 8-way set- 0
associative S is same as a fully 1
associative S.

Four-way set associative

Eight-way set associative (fully associative)

Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data

Total Cache Capacity =

Associativity x # of sets x block_size
Bytes = blocks/set x sets x Bytes/block

C=N xS x B

Tag

Index

Byte Offset

address_size = tag_size + index_size + offset_size

= tag_size +log,(S) + log,(B)

Write Policy Choices

 (Cache hit:

— write through: writes both cache & memory on every access
* Generally higher memory traffic but simpler pipeline & cache design

— write back: writes cache only, memory written only when dirty
entry evicted

e Adirty bit per line reduces write-back traffic
* Must handle 0, 1, or 2 accesses to memory for each load/store

 Cache miss:
— no write allocate: only write to main memory
— write allocate (aka fetch on write): fetch into cache

e Common combinations:
— write through and no write allocate
— write back with write allocate

Average Memory Access Time (AMAT)

* Average Memory Access Time (AMAT) is the
average time to access memory considering
both hits and misses in the cache

AMAT = Time for a hit
+ Miss rate x Miss penalty

Today

Cache Replacement Policies

Understanding Cache misses

ncreasing Cache Performance

Performance of multi-level Caches (L1,L2, ...)

Real world example caches

Four-Way Set-Associative Cache

e 28=256sets each with four ways (each with one block)

253
254
255

g -

3130 ... 1381211 ... 210 / Byte offset
J%
Tag 2 s
Index
lhdex V Tag Data V Tag Data V Tag Data V Tag Data
0 0 0 0
1 \ 1 \ el 1 \ . 1 \)
2 ”aWs 2 ‘N'FY" 2 ‘N'FY‘ 2 ‘N'FY"

253

253

253

254 254 254
255 255 255

5
S
i

716
18

L\

Ax1 select

Hit

}

Data

Costs of Set-Associative Caches

* N-way set-associative cache costs
— N comparators (delay and area)
— MUX delay (set selection) before data is available

— Data available after set selection (and Hit/Miss decision).

DM S: block is available before the Hit/Miss decision
* In Set-Associative, not possible to just assumea hitand continue
and recover laterif it was a miss

 When miss occurs, which way’s block selected for

replacement?

— Least Recently Used (LRU): one that has been unused the

longest (principle of temporal locality)
* Must track when each way’s block was used relative to other
blocksin the set
* For2-way SA S, one bit per set - setto 1 when a blockis
referenced; reset the other way’s bit (i.e., “last used”)

10

Cache Replacement Policies

e RandomReplacement

— Hardwarerandomly selects a cache evict
e Least-Recently Used

— Hardware keeps track of access history

— Replacethe entry that has not been used for the longest time

— For 2-way set-associative cache, need one bit for LRU replacement
« ExampleofaSimple “Pseudo” LRU Implementation

— Assume 64 Fully Associative entries

— Hardwarereplacement pointer pointsto one cache entry

— Whenever access is made to the entry the pointer pointsto:
* Movethe pointer to the next entry

— Otherwise: do not move the pointer
— (example of “not-most-recently used” replacement policy)

Entry 0

Entry 1

Replacement

n
L

Pointer

Entry 63

Benefits of Set-Associative Caches

16% —————————mmmmmmm o
12% -

9% -

Miss rate

6% -

3% -

O 1 | | I
One-way Two-way Four-way Eight-way

e Largest gains are in going from direct mapped to 2-way
(20%+ reduction in miss rate)

12

Sources of Cache Misses (3 C’s)

 Compulsory (cold start, first reference):

— 15t access to a block, not a lot you can do about it.

* If runningbillions of instructions, compulsory misses are
insignificant

* Capacity:

— Cache cannot contain all blocks accessed by the program
* Misses that would not occur with infinite cache

e Conflict (collision):

— Multiple memory locations mapped to same cache set
* Misses that would not occur with ideal fully associative cache

13

How to Calculate 3C’s using Cache
Simulator

1. Compulsory: set cache size to infinity and fully
associative, and count number of misses

2. Capacity: Change cache size from infinity, usually
in powers of 2, and count misses for each
reduction in size

— 16 MB, 8 MB, 4 MB, ... 128 KB, 64 KB, 16 KB

3. Conflict: Change from fully associative to n-way
set associative while counting misses

— Fully associative, 16-way, 8-way, 4-way, 2-way, 1-way

14

10%
9%
8%
7%

6% -

Miss rate 59
per type

4% A
3% -
2% -

1% A

0%

3Cs Analysis

One-way

Two-way

Four-way

Capacity

I T T I

8 16 32 64 128 256 512 1024
Cache size (KB)

* Three sources of misses (SPEC2000 integer and floating-point
benchmarks)

— Compulsory misses 0.006%; not visible
— Capacity misses, function of cache size
— Conflict portion dependson associativity and cache size .

Administrivia

* Project 3-2, delayed. Posted Sunday 10/25
now due 11/1.

* Lab 7 will help you with the CPU project (do it
before the project).

* No Midterm | regrade requests after 10/25
(Sunday).

CPU-Cache Interaction

0x4 ”

:

v

PCen‘

(5-stage pipeline)

E
| M
A —
A vV we
bubble Decode, — v|-+—addr
u . : i
Register i A Egrtr;aryrdata
addr jnst D Fetch — —_ Cache
hit> »| wdata hit? |
Primary A A 1
Instruction MD1 MD?2
Cache:‘ Stall entire
l CPU on data
|| cache mi
To Memory Control /[i\

Cache Refill Data from Lower Levels of
Memory Hierarchy

17

Improving Cache Performance
AMAT = Time for a hit + Miss rate x Miss penalty

 Reduce the time to hit in the cache
— E.g., Smaller cache

* Reduce the miss rate
— E.g., Bigger cache

* Reduce the miss penalty
— E.g., Use multiple cache levels

18

Cache Design Space

Computer architects expend considerable effort optimizing organization of cache
hierarchy— big impact on performance and power!

e Several interacting dimensions
— Cache size
— Block size
— Associativity
— Replacement policy
— Write-through vs. write-back
— Write allocation

e Optimal choice is a compromise

— Dependson access characteristics
* Workload
e Use (I-cache, D-cache)

— Dependson technology/ cost
e Simplicity often wins

Cache Size

A

Associativity

Block Size

Bad v

Good FactorA FactorB

Less More

Primary Cache Parameters

Block size

— how many bytes of data in each cache entry?
Associativity

— how many ways in each set?

— Direct-mapped => Associativity = 1

— Set-associative => 1 < Associativity < #Entries
— Fully associative => Associativity = #Entries

Capacity (bytes) = Total #Entries * Block size
#Entries = #Sets * Associativity

20

Clickers/Peer Instruction:
For fixed capacity and fixed block size, how
does increasing associativity effect AMAT?

A: Increases hit time, decreases miss rate
B: Decreases hit time, decreases miss rate
C: Increases hit time, increases miss rate

D: Decreases hit time, increases miss rate

21

Increasing Associativity?

* Hit time as associativity increases?

— Increases, with large step from direct-mapped to >=2 ways,
as now need to mux correct way to processor

— Smaller increases in hit time for further increases in
associativity

* Miss rate as associativity increases?

— Goes down due to reduced conflict misses, but most gain is
from 1->2->4-way with limited benefit from higher
associativities

* Miss penalty as associativity increases?

— Unchanged, replacement policy runs in parallel with
fetching missing line from memory

22

Increasing #Entries?

e Hittime as #entries increases?

— Increases, since reading tags and data from larger
memory structures

e Miss rate as #entries increases?

— Goes down due to reduced capacity and conflict
misses

— Architects rule of thumb: miss rate drops ~2x for every
~4x increase in capacity (only a gross approximation)

* Miss penalty as #entries increases?
— Unchanged

At some point, increase in hit time for a larger cache may overcome
the improvementin hit rate, yielding a decrease in performance

Clickers: Impact of larger blocks on
AMAT

For fixed total cache capacity and associativity,
what is effect of larger blocks on each
component of AMAT:

— A: Decrease, B: Unchanged, C: Increase
Hit Time?

Miss Rate?

Miss Penalty?

24

Clickers: Impact of larger cache blocks
on misses?

For fixed total cache capacity and associativity,
what is effect of larger blocks on each type of
miss rate:

— A: Decrease, B: Unchanged, C: Increase
Compulsory?

Capacity?

Conflict?

25

Increasing Block Size?

e Hit time as block size increases?

— Hit time unchanged, but might be slight hit-time
reduction as number of tags is reduced, so faster to
access memory holding tags

e Miss rate as block size increases?

— Goes down at first due to spatial locality, then
increases due to increased conflict misses due to
fewer blocks in cache

* Miss penalty as block size increases?

— Rises with longer block size, but with fixed constant
initial latency that is amortized over whole block

How to Reduce Miss Penalty?

Could there be locality on misses from a
cache?

Use multiple cache levels!

With Moore’s Law, more room on die for
bigger L1 caches and for second-level (L2)
cache

And in some cases even an L3 cache!
IBM mainframes have ~1GB L4 cache off-chip.

27

Review: Memory Hierarchy
Processor

Increasing
Inner distance from
. Lovel 1 processor,
Levels in decreasing
memory / Level 2 speed
hierarchy Level 3
Outer

Level n

Size of memory at each level
As we move to outer levels the latency goes up

and price per bit goes down.

From Lecture 11: In the News
At ISSCC 2015 in San Francisco this year, latest IBM
mainframe chip details

z13 designed in 22nm SOl technology with
seventeen metal layers, 4 billion transistors/chip

8 cores/chip, with 2MB L2 cache, 64MB L3 cache,
and 480MB L4 off-chip cache.

5GHz clock rate, 6 instructions per cycle, 2
threads/core

Up to 24 processor chips in shared memory node

29

IBM z13 Memory |erarchy

Shared L4
480 MB eDRAM
(1 SC chip)

i N E——
Shared L3

64 MB eDRAM
I |
Tz [D2 |)
2MB H 2 MB
eDRAM|[eDRAM| |, g

| |
L1 |[D-L1
96K || 128K

_ \SRAM SRAM)

X
w

CPU chips

KCO res

Local vs. Global Miss Rates

e [ocal miss rate —the fraction of references to
one level of a cache that miss

e Local Miss rate L2S = L2S Misses / L1S Misses
= L2S Misses / total_L2_accesses

e Global miss rate — the fraction of references that
miss in all levels of a multilevel cache

* L2S local miss rate >> than the global miss rate

31

Ay I e T
L1 Data Miss Rate

L2 Data Miss Rate
20% -f-----------c=csceccscccccccciceccccccncecacencocacaadann. ~—#— 3 Data Miss Rate

L N SRR —— . -
L1 Cache: 32KB 1$, 32KB D$

L2 Cache: 256 KB

L he: 4 MB
10% b~ e 3 Cache

5%

0%

FIGURE 5.47 The L1, L2, and L3 data cache miss rates for the Intel Core i7 920 running
the full integer SPECCPU2006 benchmarks.

Local vs. Global Miss Rates

Local miss rate — the fraction of references to one
level of a cache that miss

Local Miss rate L2S = SL2 Misses / L1S Misses

Global miss rate — the fraction of references that
miss in all levels of a multilevel cache

e L2S local miss rate >> than the global miss rate

Global Miss rate = L2S Misses / Total Accesses

= (L2S Misses / L1S Misses) x (L1S Misses / Total Accesses)
= Local Miss rate L2S x Local Miss rate L1S

AMAT = Time for a hit + Miss rate x Miss penalty

AMAT = Time for a L1S hit + (local) Miss rate L1S x
(Time for a L2S hit + (local) Miss rate L2S x L2S Miss penalty)

25%

20%

15%

10% -

5% -

0% -

Clickers/Peer Instruction
 Overall, what are L2 and L3 local miss rates?

- A: L2 > 50%, L3 > 50% B
B: L2 ~ 50%, L3 < 50% 2 Data Miss Rate
1 C: L2~ 50%’ 13~50% —#— L3 Data Miss Rate
| D:12<50%, L3 <50% 5.

E: L2 >50%, L3 “50%

..

34

Characteristic

L1 cache organization

Intel Nehalem

Split instruction and data caches

AMD Opteron X4 (Barcelona)

Split instruction and data caches

L1 cache size

32 KB each for instructions/data per
core

64 KB each for instructions/data
per core

L1 block size

64 bytes

64 bytes

L1 write policy

Write-back, Write-allocate

Write-back, Write-allocate

L1 hit time (load-use)
cache organization

Not Available
Unified (Instruction and data) per core

3 clock cycles

Unified (instruction and data) per core

L2 cache size

256 KB (0.25 MB)

512 KB (0.5 MB)

L2 block size 64 bytes 64 bytes
L2 write policy Write-back, Write-allocate Write-back, Write-allocate
L2 hit time Not Available 9 clock cycles

L3 cache organization

Unified (instruction and data)

Unified (instruction and data)

L3 cache size

8192 KB (8 MB), shared

2048 KB (2 MB), shared

L3 block size 64 bytes 64 bytes
L3 write policy Write-back, Write-allocate Write-back, Write-allocate
L3 hit time Not Available 38 (?)clock cycles

35

CPl/Miss Rates/DRAM Access
Speclnt2006

Data Only

Data Only

Instructions and Data

L1 D cache L2 D cache DRAM
misses/1000 instr | misses/1000 instr | accesses/1000 instr

perl 0.75
bzip2 0.85 11.0 5.8 2.5
gee 1.72 24.3 13.4 14.8
mcf 10.00 106.8 88.0 88.5
go 1.09 4.5 1.4 1.7
hmmer 0.80 4.4 2.5 0.6
sjeng 0.96 1.9 0.6 0.8
libquantum 1.61 33.0 331 477
h264avc 0.80 8.8 1.6 0.2
omnetpp 2.94 30.9 27.7 29.8
astar 1.79 163 9.2 8.2
xalancbmk 2.70 38.0 15.8 11.4
Median 1.35 136 7.5 5.4

In Conclusion, Cache Design Space

* Several interacting dimensions Cache Size
— Cache size
— Block size
— Associativity
— Replacement policy
— Write-through vs. write-back
— Write-allocation

* Optimal choice is a compromise

— Dependson access characteristics Bad
* Workload
e Use (I-cache, D-cache)

— Dependson technology/ cost Good |FactorA Factor B
* Simplicity often wins Less More

Associativity

Block Size

37

