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You	Are	Here!

• Parallel	Requests
Assigned	 to	computer
e.g.,	Search	“Katz”

• Parallel	Threads
Assigned	 to	core
e.g.,	Lookup,	Ads

• Parallel	Instructions
>1	instruction	@	one	time
e.g.,	5	pipelined	 instructions

• Parallel	Data
>1	data	item	@	one	 time
e.g.,	Add	of	4	pairs	of	words

• Hardware	descriptions
All	gates	@	one	time

• Programming	Languages
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Review	from	Last	Lecture

• Cache	Organization
• Cache	Capacity	
• Cache	Addressing
• Cache	write	policies
• AMAT	(average	memory	access	time)
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Different	Organizations	of	an	Eight-Block	Cache

Total	size	of	$	in	blocks	is	equal	to	
number	of	sets	× associativity.	For	
fixed	$	size	and	fixed	block	size,	
increasing associativity	decreases	
number	of	sets	while	increasing	
number	of	elements	per	set.	With	
eight	blocks,	an	8-way	set-
associative	$	is	same	as	a	fully	
associative	$.	
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Total	Cache	Capacity	=

5

Associativity		× #	of	sets		× block_size
Bytes	=	blocks/set		× sets		× Bytes/block	

Byte	OffsetTag Index

C	=	N		× S		× B

address_size =	tag_size +	index_size +	offset_size
=	tag_size +	log2(S)	+	log2(B)



Write	Policy	Choices	
• Cache	hit:

– write	through:	writes	both	cache	&	memory	on	every	access
• Generally	higher	memory	traffic	but	simpler	pipeline	&	cache	design

– write	back:	writes	cache	only,	memory	̀ written	only	when	dirty	
entry	evicted
• A	dirty	bit	per	line	reduces	write-back	traffic
• Must	handle	0,	1,	or	2	accesses	 to	memory	for	each	load/store

• Cache	miss:
– no	write	allocate:		only	write	to	main	memory
– write	allocate	(aka	fetch	on	write):		fetch	into	cache

• Common	combinations:
– write	through	and	no	write	allocate
– write	back	with	write	allocate
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Average	Memory	Access	Time	(AMAT)
• Average	Memory	Access	Time	(AMAT)	is	the	
average	time	to	access	memory	considering	
both	hits	and	misses	in	the	cache

AMAT	=		 Time	for	a	hit		
+		Miss	rate	× Miss	penalty
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Today

• Cache	Replacement	Policies
• Understanding	Cache	misses
• Increasing	Cache	Performance
• Performance	of	multi-level	Caches	(L1,L2,	…)
• Real	world	example	caches
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Four-Way	Set-Associative	Cache
• 28 =	256	sets	each	with	four	ways	(each	with	one	block)
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Costs	of	Set-Associative	Caches
• N-way	set-associative	cache	costs
– N	comparators	(delay	and	area)
– MUX	delay	(set	selection)	before	data	is	available
– Data	available	after	set	selection	(and	Hit/Miss	decision).			
DM	$:	block	is	available	before	the	Hit/Miss	decision
• In	Set-Associative,	not	possible	to	just	assume	a	hit	and	continue	
and	recover	later	if	it	was	a	miss

• When	miss	occurs,	which	way’s	block	selected	for	
replacement?
– Least	Recently	Used	(LRU):	one	that	has	been	unused	the	
longest	(principle	of	temporal	locality)
• Must	track	when	each	way’s	block	was	used	relative	to	other	
blocks	in	the	set

• For	2-way	SA	$,	one	bit	per	set	→	set	to	1	when	a	block	is	
referenced;	reset	the	other	way’s	bit	(i.e.,	“last	used”)
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Cache	Replacement	Policies
• Random	Replacement

– Hardware	randomly	selects	a	cache	evict
• Least-Recently	Used

– Hardware	keeps	track	of	access	history
– Replace	the	entry	that	has	not	been	used	for	the	longest	time
– For	2-way	set-associative	cache,	need	one	bit	for	LRU	replacement

• Example	of	a	Simple	“Pseudo”	LRU	Implementation
– Assume	64	Fully	Associative	entries
– Hardware	replacement	pointer	points	to	one	cache	entry
– Whenever	access	is	made	to	the	entry	the	pointer	points	to:

• Move	the	pointer	to	the	next	entry
– Otherwise:	do	not	move	the	pointer
– (example	of	“not-most-recently	used”	replacement	policy)

:

Entry	0
Entry	1

Entry		63

Replacement
Pointer
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Benefits	of	Set-Associative	Caches

• Largest	gains	are	in	going	from	direct	mapped	to	2-way	
(20%+	reduction	in	miss	rate)
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Sources	of	Cache	Misses	(3	C’s)
• Compulsory	(cold	start,	first	reference):
– 1st access	to	a	block,	not	a	lot	you	can	do	about	it.		

• If	running	billions	of	instructions,	compulsory	misses	are	
insignificant

• Capacity:
– Cache	cannot	contain	all	blocks	accessed	by	the	program

• Misses	that	would	not	occur	with	infinite	cache

• Conflict	(collision):
– Multiple	memory	locations	mapped	to	same	cache	set

• Misses	that	would	not	occur	with	ideal	fully	associative	cache
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How	to	Calculate	3C’s	using	Cache	
Simulator

1. Compulsory:	set	cache	size	to	infinity	and	fully	
associative,	and	count	number	of	misses

2. Capacity:	Change	cache	size	from	infinity,	usually	
in	powers	of	2,	and	count	misses	for	each	
reduction	in	size
– 16	MB,	8	MB,	4	MB,	…	128	KB,	64	KB,	16	KB

3. Conflict:	Change	from	fully	associative	to	n-way	
set	associative	while	counting	misses
– Fully	associative,	16-way,	8-way,	4-way,	2-way,	1-way
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3Cs	Analysis

• Three	sources	of	misses	(SPEC2000	integer	and	floating-point	
benchmarks)
– Compulsory	misses	0.006%;	not	visible
– Capacity	misses,	function	of	cache	size
– Conflict	portion	depends	on	associativity and	cache	size 15



Administrivia

• Project	3-2,	delayed.		Posted	Sunday	10/25	
now	due	11/1.

• Lab	7	will	help	you	with	the	CPU	project	(do	it	
before	the	project).

• No	Midterm	I	regrade requests	after	10/25	
(Sunday).
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CPU-Cache	Interaction
(5-stage	pipeline)
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Improving	Cache	Performance

• Reduce	the	time	to	hit	in	the	cache
– E.g.,	Smaller	cache

• Reduce	the	miss	rate
– E.g.,	Bigger	cache

• Reduce	the	miss	penalty
– E.g.,	Use	multiple	cache	levels
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AMAT	=		Time	for	a	hit		+		Miss	rate	x	Miss	penalty



Cache	Design	Space

• Several	interacting	dimensions
– Cache	size
– Block	size
– Associativity
– Replacement	policy
– Write-through	vs.	write-back
– Write	allocation

• Optimal	choice	is	a	compromise
– Depends	on	access	characteristics

• Workload
• Use	(I-cache,	D-cache)

– Depends	on	technology	/	cost
• Simplicity	often	wins

Associativity

Cache	Size

Block	Size

Bad

Good

Less More

Factor	A Factor	B
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Computer	architects	expend	considerable	effort	optimizing	organization	of	cache	
hierarchy	– big	impact	on	performance	and	power!



Primary	Cache	Parameters

• Block	size
– how	many	bytes	of	data	in	each	cache	entry?

• Associativity
– how	many	ways	in	each	set?
– Direct-mapped	=>	Associativity	=	1
– Set-associative	=>	1	<	Associativity	<	#Entries
– Fully	associative	=>	Associativity	=	#Entries

• Capacity	(bytes)	=	Total	#Entries	*	Block	size
• #Entries	= #Sets	*	Associativity
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Clickers/Peer	Instruction:
For	fixed	capacity	and	fixed	block	size,	how	
does	increasing	associativity	effect	AMAT?
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Increasing	Associativity?
• Hit	time	as	associativity	increases?
– Increases,	with	large	step	from	direct-mapped	to	>=2	ways,	
as	now	need	to	mux	correct	way	to	processor

– Smaller	increases	in	hit	time	for	further	increases	in	
associativity

• Miss	rate	as	associativity	increases?
– Goes	down	due	to	reduced	conflict	misses,	but	most	gain	is	
from	1->2->4-way	with	limited	benefit	from	higher	
associativities

• Miss	penalty	as	associativity	increases?
– Unchanged,	replacement	policy	runs	in	parallel	with	
fetching	missing	line	from	memory
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Increasing	#Entries?
• Hit	time	as	#entries	increases?
– Increases,	since	reading	tags	and	data	from	larger	
memory	structures

• Miss	rate	as	#entries	increases?
– Goes	down	due	to	reduced	capacity	and	conflict	
misses

– Architects	rule	of	thumb:	miss	rate	drops	~2x	for	every	
~4x	increase	in	capacity	(only	a	gross	approximation)

• Miss	penalty	as	#entries	increases?
– Unchanged
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At	some	point,	increase	in	hit	time	for	a	larger	cache	may	overcome	
the	improvement	in	hit	rate,	yielding	a	decrease	in	performance



Clickers:	Impact	of	larger	blocks	on	
AMAT

• For	fixed	total	cache	capacity	and	associativity,	
what	is	effect	of	larger	blocks	on	each	
component	of	AMAT:
– A:	Decrease,	B:	Unchanged,	C:	Increase

• Hit	Time?
• Miss	Rate?
• Miss	Penalty?
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Clickers:	Impact	of	larger	cache	blocks	
on	misses?

• For	fixed	total	cache	capacity	and	associativity,	
what	is	effect	of	larger	blocks	on	each	type	of	
miss	rate:
– A:	Decrease,	B:	Unchanged,	C:	Increase

• Compulsory?	
• Capacity?
• Conflict?
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Increasing	Block	Size?
• Hit	time	as	block	size	increases?
– Hit	time	unchanged,	but	might	be	slight	hit-time	
reduction	as	number	of	tags	is	reduced,	so	faster	to	
access	memory	holding	tags

• Miss	rate	as	block	size	increases?
– Goes	down	at	first	due	to	spatial	locality,	then	
increases	due	to	increased	conflict	misses	due	to	
fewer	blocks	in	cache

• Miss	penalty	as	block	size	increases?
– Rises	with	longer	block	size,	but	with	fixed	constant	
initial	latency	that	is	amortized	over	whole	block
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How	to	Reduce	Miss	Penalty?

• Could	there	be	locality	on	misses	from	a	
cache?

• Use	multiple	cache	levels!
• With	Moore’s	Law,	more	room	on	die	for	
bigger	L1	caches	and	for	second-level	(L2)	
cache

• And	in	some	cases	even	an	L3	cache!
• IBM	mainframes	have	~1GB	L4	cache	off-chip.
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Review:	Memory	Hierarchy
Processor

Size	of	memory	at	each	level

Increasing
distance	from
processor,
decreasing		
speed

Level	1

Level	2

Level	n

Level	3

.	.	.

Inner

Outer

Levels	in	
memory	
hierarchy

As	we	move	to outer	levels	the	latency	goes	up
and	price	per	bit	goes	down.
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From	Lecture	11:	In	the	News
• At	ISSCC	2015	in	San	Francisco	this	year,	latest	IBM	
mainframe	chip	details

• z13	designed	in	22nm	SOI	technology	with	
seventeenmetal	layers,	4	billion	transistors/chip

• 8	cores/chip,	with	2MB	L2	cache,	64MB	L3	cache,	
and	480MB	L4	off-chip	cache.

• 5GHz	clock	rate,	6	instructions	per	cycle,	2	
threads/core

• Up	to	24	processor	chips	in	shared	memory	node
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IBM	z13	Memory	Hierarchy

30

��������QP�1H[W�*HQHUDWLRQ�,%0�6\VWHP�]�0LFURSURFHVVRU
�������,(((�
,QWHUQDWLRQDO�6ROLG�6WDWH�&LUFXLWV�&RQIHUHQFH �� RI���

&DFKH�+LHUDUFK\

6KDUHG�/�
����0%�H'5$0
���6&�FKLSV��
����0%�HDFK�

6KDUHG�/�
���0%�H'5$0

,�/�
��0%�
65$0

,�/�
��.�
65$0

'�/�
��.�
65$0

[�

[�

��QP�'HVLJQ��0&0�

'�/�
��0%�
65$0

FR
UH
V

&
38

�F
KL
SV

6KDUHG�/�
����0%�H'5$0

���6&�FKLS�

6KDUHG�/�
���0%�H'5$0

,�/�
� 0%�
H'5$0

,�/�
��.�
65$0

'�/�
���.�
65$0

[�

[�

��QP�'HVLJQ��1RGH�

'�/�
� 0%�
H'5$0

FR
UH
V

&
38

�F
KL
SV

��������QP�1H[W�*HQHUDWLRQ�,%0�6\VWHP�]�0LFURSURFHVVRU
�������,(((�
,QWHUQDWLRQDO�6ROLG�6WDWH�&LUFXLWV�&RQIHUHQFH �� RI���

&3�&KLS�2YHUYLHZ

&RUH�

&RUH�

&RUH�

&RUH�

&RUH�

&RUH�

&RUH�&RUH�/�

/�
/�

/�

/��/RJLF�
/�',5

/��/RJLF�
/�',5

3&,(� 3%8 3%8 3&,(�*;

;%
8
6�
'
ULY

HU
V�
	
�5
HF
HL
YH
UV

;%
8
6�
'
ULY

HU
V�
	
�5
HF
HL
YH
UV

0&�'UYUV 0&�5FYUV0&8� ���%�
7UDQVLVWRUV

� ���PP� DUHD

� a��.�&�V

� ��*+]

� ��FRUHV��
/��FDFKH�	�
GLUHFWRU\�
0&8��,2V

��������QP�1H[W�*HQHUDWLRQ�,%0�6\VWHP�]�0LFURSURFHVVRU
�������,(((�
,QWHUQDWLRQDO�6ROLG�6WDWH�&LUFXLWV�&RQIHUHQFH �� RI���

6&�&KLS�2YHUYLHZ
� ���%�
7UDQVLVWRUV

� ���PP� DUHD

� a��.�&�V

� ����*+]

� /��&DFKH��
/��'LUHFWRU\��
603�FRQWURO�	�
FRKHUHQF\�
ORJLF���,2V

H'5$0 &DFKH

H'5$0 &DFKH

/��
'DWD
ELW�
VWDFN

/��'LU
H'5$0
��ORJLF

/��'LU
H'5$0
��ORJLF

/��'LU
H'5$0
��ORJLF

/��'LU
H'5$0
��ORJLF

$�%XV�'59

$�%XV�'5�9

$�%XV�5&9

$�%XV�5&9

;�
%X

V�
'5

9
;�
%X

V�
'5

9

;�
%X

V�
'5

9
;�
%
XV
�5
&
9

;�
%
XV
�5
&
9

;�
%
XV
�5
&
9

6�
%
XV
�'
59

6�
%
XV
�5
&
9

7HVW

/��
'DWD
ELW�
VWDFN



Local	vs.	Global	Miss	Rates

• Local	miss	rate	– the	fraction	of	references	to	
one	level	of	a	cache	that	miss

• Local	Miss	rate	L2$	=	L2$	Misses	/	L1$	Misses																																																										
=	L2$	Misses	/	total_L2_accesses

• Global	miss	rate	– the	fraction	of	references	that	
miss	in	all	levels	of	a	multilevel	cache
• L2$	local	miss	rate	>>	than	the	global	miss	rate
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L1	Cache:	32KB	I$,	32KB	D$
L2	Cache:	256	KB
L3	Cache:	4	MB



Local	vs.	Global	Miss	Rates
• Local	miss	rate	– the	fraction	of	references	to	one	
level	of	a	cache	that	miss

• Local	Miss	rate	L2$	=	$L2	Misses	/	L1$	Misses
• Global	miss	rate	– the	fraction	of	references	that	
miss	in	all	levels	of	a	multilevel	cache
• L2$	local	miss	rate	>>	than	the	global	miss	rate

• Global	Miss	rate	=	L2$	Misses	/	Total	Accesses
=	(L2$	Misses	/	L1$	Misses)	× (L1$	Misses	/	Total	Accesses)
=	Local	Miss	rate	L2$	× Local	Miss	rate	L1$

• AMAT	=		Time	for	a	hit		+		Miss	rate	× Miss	penalty
• AMAT	=		Time	for	a	L1$	hit		+	(local)	Miss	rate	L1$	×

(Time	for	a	L2$	hit	+	(local)	Miss	rate	L2$	× L2$	Miss	penalty)
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Clickers/Peer	Instruction
• Overall,	what	are	L2	and	L3	local	miss	rates?
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A:	L2	>	50%,	L3	>	50%
B:	L2	~	50%,	L3	<	50%
C:	L2	~	50%,	L3	~	50%
D:	L2	<	50%,	L3	<	50%
E:	L2	>	50%,	L3	~50%
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CPI/Miss	Rates/DRAM	Access
SpecInt2006
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Instructions	and	DataData	Only Data	Only



In	Conclusion,	Cache	Design	Space
• Several	interacting	dimensions

– Cache	size
– Block	size
– Associativity
– Replacement	policy
– Write-through	vs.	write-back
– Write-allocation

• Optimal	choice	is	a	compromise
– Depends	on	access	characteristics

• Workload
• Use	(I-cache,	D-cache)

– Depends	on	technology	/	cost
• Simplicity	often	wins

Associativity

Cache	Size

Block	Size

Bad

Good

Less More

Factor	A Factor	B
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