CS 61C:

Great Ideas in Computer Architecture Amdahl's Law, Data-level Parallelism

Instructors:
John Wawrzynek \& Vladimir Stojanovic http://inst.eecs.berkeley.edu/~cs61c/

New-School Machine Structures (It's a bit more complicated!)

Software Hardware

- Parallel Requests

Assigned to computer e.g., Search "Katz"

- Parallel Threads

Assigned to core e.g., Lookup, Ads

Harness

 Parallelism \& Achieve High PerformanceWarehouse Scale Computer

Smart Phone

- Parallel Instructions
>1 instruction @ one time
e.g., 5 pipelined instructions
- Parallel Data
>1 data item @ one time
e.g., Add of 4 pairs of words
- Hardware descriptions

All gates @ one time

- Programming Languages

Using Parallelism for Performance

- Two basic ways:
- Multiprogramming
- run multiple independent programs in parallel
- "Easy"
- Parallel computing
- run one program faster
- "Hard"
- We'll focus on parallel computing for next few lectures

Single-Instruction/Single-Data Stream (SISD)

- Sequential computer that exploits no parallelism in either the instruction or data streams. Examples of SISD architecture are traditional uniprocessor machines

Single-Instruction/Multiple-Data Stream

 (SIMD or "sim-dee")

- SIMD computer exploits multiple data streams against a single instruction stream to operations that may be naturally parallelized, e.g., Intel SIMD instruction extensions or NVIDIA Graphics Processing Unit (GPU)

Multiple-Instruction/Multiple-Data Streams

(MIMD or "mim-dee")

- Multiple autonomous processors
simultaneously
executing different instructions on different data.
- MIMD architectures include multicore and Warehouse-Scale Computers

Multiple-Instruction/Single-Data Stream

 (MISD)

- Multiple-Instruction, Single-Data stream computer that exploits multiple instruction streams against a single data stream.
- Rare, mainly of historical interest only

Flynn* Taxonomy, 1966

Data Streams

		Data Streams	
	Single	Multiple	
Instruction Streams	Single	SISD: Intel Pentium 4	SIMD: SSE instructions of x86
	Multiple	MISD: No examples today	MIMD: Intel Xeon e5345 (Clovertown)

- In 2013, SIMD and MIMD most common parallelism in architectures - usually both in same system!
- Most common parallel processing programming style: Single Program Multiple Data ("SPMD")
- Single program that runs on all processors of a MIMD
- Cross-processor execution coordination using synchronization primitives
- SIMD (aka hw-level data parallelism): specialized function units, for handling lock-step calculations involving arrays
- Scientific computing, signal processing, multimedia (audio/video processing)
*Prof. Michael Flynn, Stanford

Big Idea: Amdahl's (Heartbreaking) Law

- Speedup due to enhancement E is

$$
\text { Speedup w/E }=\frac{\text { Exec time w/o E }}{\text { Exec------------ }}
$$

- Suppose that enhancement E accelerates a fraction $F(F<1)$ of the task by a factor $S(S>1)$ and the remainder of the task is unaffected

Speedup w/E = $1 /[(1-F)+F / S]$

Big Idea: Amdahl's Law

Speedup =
 1
 $\xrightarrow{(1-F)}+\frac{F}{S}$
 Speed-up part

Example: the execution time of half of the program can be accelerated by a factor of 2.
What is the program speed-up overall?

$$
\frac{1}{0.5+\frac{0.5}{2}}=\frac{1}{0.5+0.25}=1.33
$$

Example \#1: Amdahl's Law

$$
\text { Speedup w/E = } 1 /[(1-F)+F / S]
$$

- Consider an enhancement which runs 20 times faster but which is only usable 25% of the time

$$
\text { Speedup } w / E=1 /(.75+.25 / 20)=1.31
$$

- What if its usable only 15% of the time?

$$
\text { Speedup w/E = } 1 /(.85+.15 / 20)=1.17
$$

- Amdahl's Law tells us that to achieve linear speedup with 100 processors, none of the original computation can be scalar!
- To get a speedup of 90 from 100 processors, the percentage of the original program that could be scalar would have to be 0.1% or less

Speedup $w / E=1 /(.001+.999 / 100)=90.99$

Amdahl's Law

Strong and Weak Scaling

- To get good speedup on a parallel processor while keeping the problem size fixed is harder than getting good speedup by increasing the size of the problem.
- Strong scaling: when speedup can be achieved on a parallel processor without increasing the size of the problem
- Weak scaling: when speedup is achieved on a parallel processor by increasing the size of the problem proportionally to the increase in the number of processors
- Load balancing is another important factor: every processor doing same amount of work
- Just one unit with twice the load of others cuts speedup almost in half

Clickers/Peer Instruction

Suppose a program spends 80% of its time in a square root routine. How much must you speedup square root to make the program run 5 times faster?

$$
\text { Speedup w/E = } 1 /[(1-F)+F / S]
$$

A: 5
B: 16
C: 20
D: 100
E : None of the above

Administrativia

- MT2 is Tue, November 10th:
- Covers lecture material up till today's lecture
- Conflict: Email Fred or William by midnight today

SIMD Architectures

- Data parallelism: executing same operation on multiple data streams
- Example to provide context:
- Multiplying a coefficient vector by a data vector (e.g., in filtering)

$$
y[i]:=c[i] \times x[i], 0 \leq i<n
$$

- Sources of performance improvement:
- One instruction is fetched \& decoded for entire operation
- Multiplications are known to be independent
- Pipelining/concurrency in memory access as well

Intel "Advanced Digital Media Boost"

- To improve performance, Intel's SIMD instructions
- Fetch one instruction, do the work of multiple instructions

Intel SIMD Extensions

- MMX 64-bit registers, reusing floating-point registers [1992]
- SSE2/3/4, new 128-bit registers [1999]
- AVX, new 256-bit registers [2011]
- Space for expansion to 1024-bit registers

XMM Registers

	XMM7
	XMM6
	XMM5
	XMM4
	XMM3
	XMM2
	XMM1
	XMM0

- Architecture extended with eight 128-bit data registers: XMM registers
- x8664-bit address architecture adds 8 additional registers (XMM8 - XMM15)

Intel Architecture SSE2+ 128-Bit SIMD Data Types

- Note: in Intel Architecture (unlike MIPS) a word is 16 bits
- Single-precision FP: Double word (32 bits)
- Double-precision FP: Quad word (64 bits)

Fundamental 128-Bit Packed SIMD Data Types

SSE/SSE2 Floating Point Instructions

	Data transfer	Arithmetic	Compare
Move does both load and store	MOV\{A/U\}\{SS/PS/SD/ PD\} xmm, mem/xmm	ADD\{SS/PS/SD/PD\} xmm, mem/xmm	$\begin{aligned} & \text { CMP\{SS/PS/SD/ } \\ & \text { PD } \end{aligned}$
		SUB $\{S S / P S / S D / P D\} \times m m$, mem/xmm	
	$\begin{aligned} & \text { MOV }\{H / L\}\{P S / P D\} \\ & x m m, ~ m e m / x m m \end{aligned}$	MUL\{SS/PS/SD/PD\} xmm, mem/xmm	
		DIV\{SS/PS/SD/PD\} xmm, mem/xmm	
		SQRT\{SS/PS/SD/PD\} mem/xmm	
		MAX $\{$ SS/PS/SD/PD $\}$ mem/xmm	
		MIN\{SS/PS/SD/PD ${ }^{\text {mem }}$ /xmm	

xmm: one operand is a 128-bit SSE2 register $\mathrm{mem} / \mathrm{xmm}$: other operand is in memory or an SSE2 register \{SS\} Scalar Single precision FP: one 32-bit operand in a 128-bit register \{PS\} Packed Single precision FP: four 32-bit operands in a 128-bit register \{SD\} Scalar Double precision FP: one 64-bit operand in a 128-bit register \{PD\} Packed Double precision FP, or two 64-bit operands in a 128-bit register
$\{\mathrm{A}\}$ 128-bit operand is aligned in memory
$\{\mathrm{U}\}$ means the 128-bit operand is unaligned in memory
$\{\mathrm{H}\}$ means move the high half of the 128-bit operand
$\{L\}$ means move the low half of the 128-bit operand

Packed and Scalar Double-Precision Floating-Point Operations

Example: SIMD Array Processing

```
for each f in array
    f = sqrt(f)
for each f in array
{
    load f to the floating-point register
    calculate the square root
    write the result from the register to memory
}
for each 4 members in array
{
        load 4 members to the SSE register
        calculate 4 square roots in one operation
        store the 4 results from the register to memory
    }
                        SIMD style
```


Data-Level Parallelism and SIMD

- SIMD wants adjacent values in memory that can be operated in parallel
- Usually specified in programs as loops for (i=1000; $i>0 ; i=i-1)$

$$
x[i]=x[i]+s ;
$$

- How can reveal more data-level parallelism than available in a single iteration of a loop?
- Unroll loop and adjust iteration rate

Looping in MIPS

Assumptions:

- \$t1 is initially the address of the element in the array with the highest address
- \$f0 contains the scalar value s
- 8(\$t2) is the address of the last element to operate on CODE:

Loop: 1. I.d	\$ 22,0 (\$t1)	; \$¢2=array element
2. add.d	\$f10,\$f2,\$f0	; add s to \$f2
3. s.d	\$f10,0(\$t1)	; store result
4. addiu	\$t1,\$t1,\#-8	; decrement pointer 8 byte
5. bne	\$t1,\$t2,Loop	;repeat loop if \$t1 != \$t2

Loop Unrolled

Loop:	l.d	$\$ f 2,0(\$ t 1)$
	add.d	$\$ f 10, \$ f 2, \$ f 0$
	s.d	$\$ f 10,0(\$ t 1)$
	l.d	$\$ f 4,-8(\$ t 1)$
	add.d	$\$ f 12, \$ f 4, \$ f 0$
	s.d	$\$ f 12,-8(\$ t 1)$
	l.d	$\$ f 6,-16(\$ t 1)$
	add.d	$\$ f 14, \$ f 6, \$ f 0$
	s.d	$\$ f 14,-16(\$ t 1)$
	l.d	$\$ f 8,-24(\$ t 1)$
	add.d	$\$ f 16, \$ f 8, \$ f 0$
	s.d	$\$ f 16,-24(\$ t 1)$
	addiu	$\$ t 1, \$ t 1, \#-32$
	bne	$\$ t 1, \$ t 2, L o o p$

NOTE:

1. Only 1 Loop Overhead every 4 iterations
2. This unrolling works if
loop_limit($\bmod 4)=0$
3. Using different registers for each iteration eliminates data hazards in pipeline

Loop Unrolled Scheduled

Loop Unrolling in C

- Instead of compiler doing loop unrolling, could do it yourself in C
for ($i=1000 ; i>0 ; i=i-1)$

$$
x[i]=x[i]+s ;
$$

- Could be rewritten

What is downside of doing it in C?
for (i=1000; i>0; $i=i-4)$ \{

$$
x[i]=x[i]+s ;
$$

$$
x[i-1]=x[i-1]+s ;
$$

$$
x[i-2]=x[i-2]+s ;
$$

$$
x[i-3]=x[i-3]+s ;
$$

$$
\}
$$

Generalizing Loop Unrolling

- A loop of \mathbf{n} iterations
- k copies of the body of the loop
- Assuming (n mod k) $\neq 0$

Then we will run the loop with 1 copy of the body ($\mathbf{n} \bmod \mathbf{k}$) times and with k copies of the body floor(n/k) times

Example: Add Two Single-Precision Floating-Point Vectors

Computation to be performed:

```
vec_res.x = v1.x + v2.x;
vec_res.y = v1.y + v2.y;
vec_res.z = v1.z + v2.z;
vec_res.w = v1.w + v2.w;
```

SSE Instruction Sequence.
(Note: Destination on the pight in x86 assembly)
movaps address-of-v1, \%xmp/0
// v1.w | v1. \mid | $1 . \mathrm{y} \mid \mathrm{v} 1 . \mathrm{x}$-> xmm0
addps address-of-v2, \%xmm0
// v1.w+v2.w | f1.z+v2.z | v1.y+v2.y | v1.x+v2.x ->
xmm0
movaps \%xmm0, address-of-vec_res

In The News: Intel acquired Altera

- Altera is $2^{\text {nd }}$ biggest FPGA maker after Xilinx - FPGA (Field-Programmable Gate Array)
- Altera already has fabrication deal to use Intel's 14nm technology
- Intel experimenting with FPGA next to server processor
- Microsoft to use programmable logic chips to accelerate Bing search engine

Break

- Come join CSUA Hackathon!! Form teams of 4, hack, and win awesome prizes! Prizes include monitors, headsets, and more! Delicious food will be served throughout, including some secret midnight goodies!
- Register your team day-of and write a good description of your project (1-2 sentences). Hackathon starts from 6PM on October 30th - 2PM, October 31st. See you there!
- Also, feel free to join CSUA's General Meeting \#2 to listen and network with Jeff Atwood, our speaker, and socialize with other people from the CS community.

Intel SSE Intrinsics

- Intrinsics are C functions and procedures for inserting assembly language into C code, including SSE instructions
- With intrinsics, can program using these instructions indirectly
- One-to-one correspondence between SSE instructions and intrinsics

Example SSE Intrinsics

Instrinsics:
Corresponding SSE instructions:

- Vector data type:
_m128d
- Load and store operations:

$$
\begin{aligned}
& \text { _mm_load_pd } \\
& \text { _mm_store_pd } \\
& \text { _mm_loadu_pd } \\
& \text { _mm_storeu_pd }
\end{aligned}
$$

MOVAPD/aligned, packed double MOVAPD/aligned, packed double MOVUPD/unaligned, packed double MOVUPD/unaligned, packed double

- Load and broadcast across vector
_mm_load1_pd MOVSD + shuffling/duplicating
- Arithmetic:
$\begin{array}{ll}\text { _mm_add_pd } & \text { ADDPD/add, packed double } \\ \text { _mm_mul_pd } & \text { MULPD/multiple, packed double }\end{array}$

Example: 2×2 Matrix Multiply

Definition of Matrix Multiply:

$$
C_{i, j}=(A \times B)_{i, j}=\sum_{k=1}^{2} A_{i, k} \times B_{k, j}
$$

Example: 2×2 Matrix Multiply

- Using the XMM registers
- 64-bit/double precision/two doubles per XMM

Stored in memory in Column order

$$
\begin{array}{cc}
{\left[\begin{array}{ll}
C_{1,1} & C_{1,2} \\
C_{2,1} & C_{2,2}
\end{array}\right]} \\
\mathrm{C}_{1}
\end{array}
$$

Example: 2×2 Matrix Multiply

- Initialization

Example: 2×2 Matrix Multiply

$$
\left[\begin{array}{ll}
\mathrm{A}_{1,1} & \mathrm{~A}_{1,2} \\
\mathrm{~A}_{2,1} & \mathrm{~A}_{2,2}
\end{array}\right] \times\left[\begin{array}{ll}
\mathrm{B}_{1,1} & \mathrm{~B}_{1,2} \\
\mathrm{~B}_{2,1} & \mathrm{~B}_{2,2}
\end{array}\right]=\left[\begin{array}{ll}
\mathrm{C}_{1,1}=\left[\begin{array}{ll}
\mathrm{A}_{1,1} \mathrm{~B}_{1,1} \\
\mathrm{~A}_{2,1} \mathrm{~A}_{1,2} \mathrm{~B}_{2,1} \mathrm{~B}_{1,1} & \mathrm{C}_{1,2}=\mathrm{A}_{1,2} \mathrm{~B}_{1,2}+\mathrm{A}_{1,2} \mathrm{~B}_{2,2} \\
\mathrm{C}_{2,2}=\mathrm{A}_{2,1} \mathrm{~B}_{1,2}+\mathrm{A}_{2,2} \mathrm{~B}_{2,2}
\end{array}\right]
\end{array}\right]
$$

- Initialization

- $\mathrm{I}=1$

_mm_load_pd: Load 2 doubles into XMM reg, Stored in memory in Column order

_mm_load1_pd: SSE instruction that loads a double word and stores it in the high and low double words of the XMM register (duplicates value in both halves of XMM)

Example: 2×2 Matrix Multiply

$$
\left[\begin{array}{ll}
\mathrm{A}_{1,1} & \mathrm{~A}_{1,2} \\
\mathrm{~A}_{2,1} & \mathrm{~A}_{2,2}
\end{array}\right] \times\left[\begin{array}{ll}
\mathrm{B}_{1,1} & \mathrm{~B}_{1,2} \\
\mathrm{~B}_{2,1} & \mathrm{~B}_{2,2}
\end{array}\right]=\left[\begin{array}{ll}
\mathrm{C}_{1,1}+\begin{array}{ll}
\mathrm{A}_{1,1} \mathrm{~B}_{1,1} \\
\mathrm{C}_{2,1} \mathrm{~A}_{2,2} \mathrm{~A}_{1,1} \mathrm{~B}_{2,1} & \mathrm{C}_{1,2}=\mathrm{A}_{1,1} \mathrm{~B}_{1,2}+\mathrm{A}_{1,2} \mathrm{~B}_{2,2} \mathrm{~B}_{2,1}
\end{array} & \mathrm{C}_{2,2}=\mathrm{A}_{2,1} \mathrm{~B}_{1,2}+\mathrm{A}_{2,2} \mathrm{~B}_{2,2}
\end{array}\right]
$$

- First iteration intermediate result

- $\mid=1$

_mm_load_pd: Stored in memory in Column order

c1 = _mm_add_pd(c1,_mm_mul_pd(a,b1)); c2 = _mm_add_pd(c2,_mm_mul_pd(a,b2)); SSE instructions first do parallel multiplies and then parallel adds in XMM registers
_mm_load1_pd: SSE instruction that loads a double word and stores it in the high and low double words of the XMM register (duplicates value in both halves of XMM)

Example: 2×2 Matrix Multiply

$$
\left[\begin{array}{l}
\mathrm{A}_{1,1} \\
\mathrm{~A}_{2,1} \\
\mathrm{~A}_{1,2} \\
\mathrm{~A}_{2,2}
\end{array}\right] \times\left[\begin{array}{ll}
\mathrm{B}_{1,1} & \mathrm{~B}_{1,2} \\
\mathrm{~B}_{2,1} & \mathrm{~B}_{2,2}
\end{array}\right]=\left[\begin{array}{l}
\mathrm{C}_{1,1}=\left[\begin{array}{l}
\mathrm{A}_{1,1} \mathrm{~B}_{1,1} \\
\mathrm{C}_{2,1}=\mathrm{A}_{2,1} \mathrm{~A}_{1,2} \mathrm{~B}_{2,1} \\
\mathrm{~A}_{2,2} \mathrm{~B}_{2,1}
\end{array}\right.
\end{array} \begin{array}{l}
\mathrm{C}_{1,2}=\mathrm{A}_{1,1} \mathrm{~B}_{1,2}+\mathrm{A}_{1,2} \mathrm{~B}_{2,2} \\
\mathrm{C}_{2,2}=\mathrm{A}_{2,1} \mathrm{~B}_{1,2}+\mathrm{A}_{2,2} \mathrm{~B}_{2,2}
\end{array}\right]
$$

- First iteration intermediate result

- $\mid=2$

A | $\mathrm{A}_{1,2}$ | $\mathrm{~A}_{2,2}$ |
| :--- | :--- |

_mm_load_pd: Stored in memory in Column order

c1 = _mm_add_pd(c1,_mm_mul_pd(a,b1)); c2 = _mm_add_pd(c2,_mm_mul_pd(a,b2)); SSE instructions first do parallel multiplies and then parallel adds in XMM registers
_mm_load1_pd: SSE instruction that loads a double word and stores it in the high and low double words of the XMM register (duplicates value in both halves of XMM)

Example: 2×2 Matrix Multiply

- Second iteration intermediate result

	$C_{1,1}$	$C_{2,1}$
C_{1}	$A_{1,1} B_{1,1}+A_{1,2} B_{2,1}$	$A_{2,1} B_{1,1}+A_{2,2} B_{2,1}$
C_{2}	$A_{1,1} B_{1,2}+A_{1,2} B_{2,2}$	$A_{2,1} B_{1,2}+A_{2,2} B_{2,2}$
	$C_{1,2}$	$C_{2,2}$

$\mathrm{c} 1=$ _mm_add_pd(c1,_mm_mul_pd(a,b1)); c2 = _mm_add_pd(c2,_mm_mul_pd(a,b2)); SSE instructions first do parallel multiplies and then parallel adds in XMM registers

- $\mid=2$

_mm_load_pd: Stored in memory in Column order

_mm_load1_pd: SSE instruction that loads a double word and stores it in the high and low double words of the XMM register (duplicates value in both halves of XMM)

Example: 2×2 Matrix Multiply (Part 1 of 2)

\#include <stdio.h>
// header file for SSE compiler intrinsics
\#include <emmintrin.h>
// NOTE: vector registers will be represented in comments as v1 = [a|b]
// where v1 is a variable of type __m128d and a, b are doubles
int main(void) \{
// allocate A, B, C aligned on 16-byte boundaries
double A[4] __attribute__ ((aligned (16)));
double $\mathrm{B}[4]$ __attribute__ ((aligned (16)));
double C[4] __attribute__ ((aligned (16)));
int Ida $=2$;
int $\mathrm{i}=0$;
// declare several 128-bit vector variables
__m128d c1,c2,a,b1,b2;

```
// Initialize A, B, C for example
/* A = (note column order!)
    10
    O1
    */
    A[0] = 1.0; A[1] = 0.0; A[2] = 0.0; A[3] = 1.0;
/* B = (note column order!)
    13
    24
    */
    B[0] = 1.0; B[1] = 2.0; B[2] = 3.0; B[3] = 4.0;
/* C= (note column order!)
    O
    0
    */
    C[0] = 0.0; C[1] = 0.0; C[2] = 0.0; C[3] = 0.0;
```


Example: 2 x 2 Matrix Multiply (Part 2 of 2)

```
// used aligned loads to set
    for ( \(\mathrm{i}=0 ; \mathrm{i}<2 ; \mathrm{i}++\) ) \(\{\)
        /* \(a=\)
            \(i=0:\) [a_11 | a_21]
        \(i=1\) : [a_12 | a_22]
        */
        a = _mm_load_pd(A+i*Ida);
        /* b1 =
        \(i=0:\left[b \_11 \mid b \_11\right]\)
        \(i=1:\left[b \_21 \mid b \_21\right]\)
        */
        b1 = _mm_load1_pd(B+i+0*lda);
        /* b2 =
            \(i=0:\left[b \_12 \mid b \_12\right]\)
            \(i=1:\left[b \_22 \mid b \_22\right]\)
        */
        b 2 = _mm_load1_pd(B+i+1*|da);
```

// used aligned loads to set

```
    // c1 = [c_11 | c_21]
```

 // c1 = [c_11 | c_21]
 c1 = _mm_load_pd(C+0*Ida);
 c1 = _mm_load_pd(C+0*Ida);
 // c2 = [c_12 | c_22]
 // c2 = [c_12 | c_22]
 c2 = _mm_load_pd(C+1*|da);
    ```
    c2 = _mm_load_pd(C+1*|da);
```

```
/* c1 =
    i=0: [c_11+a_11*b_11 | c_21 + a_21*b_11]
    i=1: [c_11+a_21*b_21 | c_21 + a_22*b_21]
    */
    c1 = _mm_add_pd(c1,_mm_mul_pd(a,b1));
    /* c2 =
    i=0: [c_12 + a_11*b_12 | c_22 + a_21*b_12]
    i=1: [c_12+a_21*b_22 | c_22 + a_22*b_22]
    */
    c2 = _mm_add_pd(c2,_mm_mul_pd(a,b2));
}
// store c1,c2 back into C for completion
_mm_store_pd(C+0*Ida,c1);
_mm_store_pd(C+1*Ida,c2);
// print C
printf("%g,%g\n%g,%g\n",C[0],C[2],C[1],C[3]);
return 0;
```

\}

Inner loop from gcc -O -S

L2: movapd (\%rax,\%rsi), \%xmm1 //Load aligned $A[i, i+1]->m 1$ movddup (\%rdx), \%xmm0 //Load B[j], duplicate->m0 mulpd $\% x m m 1, \% x m m 0 \quad / / M u l t i p l y ~ m 0 * m 1->m 0$ addpd $\% x m m 0, \% x m m 3$ //Add m0+m3->m3 movddup $16(\% r d x)$, \%xmm0 //Load $B[j+1]$, duplicate->m0 mulpd $\% x m m 0, \% x m m 1 \quad / / M u l t i p l y ~ m 0 * m 1->m 1$
addpd $\% x m m 1, \% x m m 2$ //Add m1+m2->m2
addq $\quad \$ 16, \% r a x$
// rax+16 -> rax (i+=2)
addq $\quad \$ 8, \% r d x$
// rdx+8 -> rdx (j+=1)
cmpq $\$ 32, \% r a x$
jne L2
movapd \%xmm3,(\%rcx) movapd \%xmm2,(\%rdi) // rax == 32?
// jump to L2 if not equal
//store aligned m3 into C[k,k+1] //store aligned m2 into C[I,l+1]

And in Conclusion, ...

- Amdahl's Law: Serial sections limit speedup
- Flynn Taxonomy
- Intel SSE SIMD Instructions
- Exploit data-level parallelism in loops
- One instruction fetch that operates on multiple operands simultaneously
- 128-bit XMM registers
- SSE Instructions in C
- Embed the SSE machine instructions directly into C programs through use of intrinsics
- Achieve efficiency beyond that of optimizing compiler

