
CS	61C:	Great	Ideas	in	Computer	
Architecture	(Machine	Structures)
Thread-Level	Parallelism	(TLP)	

and	OpenMP

Instructors:
John	Wawrzynek	&	Vladimir	Stojanovic
http://inst.eecs.berkeley.edu/~cs61c/

Review
• Sequential	software	is	slow	software
– SIMD	and	MIMD	are	paths	to	higher	performance

• MIMD	thru:	multithreading	processor	cores	
(increases	utilization),	Multicore	processors	
(more	cores	per	chip)

• Synchronization	– coordination	among	threads
– MIPS:	atomic	read-modify-write	using	load-
linked/store-conditional

• OpenMP as	simple	parallel	extension	to	C
– Pragmas	for	forking	multiple	Threads
– ≈	C:	small	so	easy	to	learn,	but	not	very	high	level	and	
it’s	easy	to	get	into	trouble

2

3

Clickers:		Consider	the	following	code	when	
executed	concurrently by	two	threads.

What	possible	values	can	result	in	*($s0)?

*($s0) = 100
lw $t0,0($s0)
addi $t0,$t0,1
sw $t0,0($s0)

A:	101	or	102
B:	100,	101,	or	102
C:	100	or	101

OpenMP Programming	Model	- Review

• Fork	- Join	Model:

• OpenMP programs	begin	as	single	process	(master	thread)	
and	executes	sequentially	until	the	first	parallel	region	
construct	is	encountered
– FORK:		Master	thread	then	creates	a	team	of	parallel	threads
– Statements	in	program	that	are	enclosed	by	the	parallel	region	

construct	are	executed	in	parallel	among	the	various	threads
– JOIN: When	the	team	threads	complete	the	statements	in	the	

parallel	region	construct,	they	synchronize	and	terminate,	
leaving	only	the	master	thread

4

parallel Pragma	and	Scope	-
Review

• Basic	OpenMP construct	for	parallelization:
#pragma omp parallel
{

/* code goes here */
}
– Each thread	runs	a	copy	of	code	within	the	block
– Thread	scheduling	is	non-deterministic

• OpenMP default	is	shared variables
– To	make	private,	need	to	declare	with	pragma:
#pragma omp parallel private (x)

5

Example:	Calculating	π

6

Sequential	Calculation	of	π in	C	
#include <stdio.h> /* Serial Code */

static long num_steps = 100000;
double step;

void main () {
int i;

double x, pi, sum = 0.0;
step = 1.0/(double)num_steps;

for (i = 1; i <= num_steps; i++) {
x = (i - 0.5) * step;

sum = sum + 4.0 / (1.0 + x*x);
}

pi = sum / num_steps;
printf ("pi = %6.12f\n", pi);

} 7

Parallel	OpenMP Version	(1)
#include <omp.h>
#define NUM_THREADS 4
static long num_steps = 100000; double step;

void main () {
int i; double x, pi, sum[NUM_THREADS];
step = 1.0/(double) num_steps;
#pragma omp parallel private (i, x)
{
int id = omp_get_thread_num();
for (i=id, sum[id]=0.0; i< num_steps; i=i+NUM_THREADS)
{
x = (i+0.5)*step;
sum[id] += 4.0/(1.0+x*x);

}
}
for(i=1; i<NUM_THREADS; i++)
sum[0] += sum[i]; pi = sum[0] / num_steps

printf ("pi = %6.12f\n", pi);
} 8

OpenMP Directives	(Work-Sharing)

9

Shares	iterations	of	a	
loop	across	the	threads

Each	section	is	executed
by	a	separate	thread

Serializes	the	execution
of	a	thread

• These	are	defined	within a	parallel section

Parallel Statement	Shorthand

#pragma omp parallel

{

#pragma omp for

for(i=0;i<len;i++) { … }

}

can	be	shortened	to:
#pragma omp parallel for

for(i=0;i<len;i++) { … }

• Also	works	for	sections
10

This	is	the	only	
directive	in	the	
parallel	section

Building	Block:	for loop

for (i=0; i<max; i++) zero[i] = 0;

• Breaks	for	loop	into	chunks,	and	allocate	each	to	a	
separate	thread
– e.g.	if	max =	100	with	2	threads:

assign	0-49	to	thread	0,	and	50-99	to	thread	1
• Must	have	relatively	simple	“shape”	for	an	OpenMP-
aware	compiler	to	be	able	to	parallelize	 it
– Necessary	 for	the	run-time	system	to	be	able	to	determine	
how	many	of	the	loop	iterations	to	assign	to	each	thread

• No	premature	exits	from	the	loop	allowed
– i.e.	No	break,	return,	exit,	goto statements

11

In	general,	
don’t	 jump	
outside	of	any	
pragma block

Parallel	for pragma
#pragma omp parallel for
for (i=0; i<max; i++) zero[i] = 0;

• Master	thread	creates	additional	threads,	
each	with	a	separate	execution	context

• All	variables	declared	outside	for	loop	are	
shared	by	default,	except	for	loop	index	
which	is	private	per	thread	(Why?)

• Implicit	“barrier”	synchronization	at	end	of	
for	loop

• Divide	index	regions	sequentially	per	thread
– Thread	0	gets	0,	1,	…,	(max/n)-1;	
– Thread	1	gets	max/n,	max/n+1,	…,	2*(max/n)-1
– Why? 12

OpenMP	Timing

• Elapsed	wall	clock	time:
double omp_get_wtime(void);
– Returns	elapsed	wall	clock	time	in	seconds
– Time	is	measured	per	thread,	no	guarantee	can	be	
made	that	two	distinct	threads	measure	the	same	
time

– Time	is	measured	from	“some	time	in	the	past,”	so	
subtract	results	of	two	calls	to	omp_get_wtime
to	get	elapsed	time

13

Matrix	Multiply	in	OpenMP
// C[M][N] = A[M][P] × B[P][N]
start_time = omp_get_wtime();
#pragma omp parallel for private(tmp, j, k)
for (i=0; i<M; i++){

for (j=0; j<N; j++){
tmp = 0.0;
for(k=0; k<P; k++){
/* C(i,j) = sum(over k) A(i,k) * B(k,j)*/
tmp += A[i][k] * B[k][j];

}
C[i][j] = tmp;

}
}

run_time = omp_get_wtime() - start_time;

14

Outer	loop	spread	across	N	
threads;	
inner	loops	inside	a	single	
thread

Notes	on	Matrix	Multiply	Example

• More	performance	optimizations	available:
– Higher	compiler	optimization (-O2,	-O3)	to	reduce	
number	of	instructions	executed

– Cache	blocking to	improve	memory	performance
– Using	SIMD	SSE	instructions	to	raise	floating	point	
computation	rate	(DLP)

15

OpenMP	Reduction
double avg, sum=0.0, A[MAX]; int i;
#pragma omp parallel for private (sum)
for (i = 0; i <= MAX ; i++)

sum += A[i];
avg = sum/MAX; // bug

• Problem	is	that	we	really	want	sum	over	all	threads!
• Reduction:	specifies	that	1	or	more	variables	that	are	private	

to	each	thread	are	subject	of	reduction	operation	at	end	of	
parallel	region:
reduction(operation:var)	where
– Operation:	operator	to	perform	on	the	variables	(var)	at	the	end	of	the	parallel	

region
– Var:	One	or	more	variables	on	which	to	perform	scalar	reduction.	

double avg, sum=0.0, A[MAX]; int i;
#pragma omp for reduction(+ : sum)
for (i = 0; i <= MAX ; i++)

sum += A[i];
avg = sum/MAX;

16

Calculating	π	Version	(1)	- review
#include <omp.h>
#define NUM_THREADS 4
static long num_steps = 100000; double step;

void main () {
int i; double x, pi, sum[NUM_THREADS];
step = 1.0/(double) num_steps;
#pragma omp parallel private (i, x)
{
int id = omp_get_thread_num();
for (i=id, sum[id]=0.0; i< num_steps; i=i+NUM_THREADS)
{
x = (i+0.5)*step;
sum[id] += 4.0/(1.0+x*x);

}
}
for(i=1; i<NUM_THREADS; i++)
sum[0] += sum[i]; pi = sum[0] / num_steps

printf ("pi = %6.12f\n", pi);
} 17

Version	2:	parallel	for,	reduction
#include <omp.h>
#include <stdio.h>
/static long num_steps = 100000;
double step;
void main ()
{ int i; double x, pi, sum = 0.0;

step = 1.0/(double) num_steps;
#pragma omp parallel for private(x) reduction(+:sum)

for (i=1; i<= num_steps; i++){
x = (i-0.5)*step;
sum = sum + 4.0/(1.0+x*x);
}
pi = sum / num_steps;

printf ("pi = %6.8f\n", pi);
}

18

Administrivia
• MT2	is	Tuesday,	November	10th:
– Covers	lecture	material	up	till	10/29	lecture
– TWO	cheat	sheets,	8.5”x11”

• TA	Review	Session:		
Sunday	11/08,	5-7PM,	10	Evans

• MT2	Room	Assignments
– If	your	login	is	in	[aaa-acz],	go	to	306	Soda
– Else	if	you	are	in	DSP,	email	Fred	back
– Else,	go	to	Wheeler	Auditorium

19

Simple	Multi-core	Processor

20

Processor	0

Control

Datapath
PC

Registers
(ALU)

Memory
Input

Output

Bytes

I/O-Memory	Interfaces

Processor	0	
Memory	
Accesses

Processor	1

Control

Datapath
PC

Registers
(ALU)

Processor	1	
Memory	
Accesses

Multiprocessor	Caches
• Memory	is	a	performance	bottleneck	even	with	one	processor
• Use	caches	to	reduce	bandwidth	demands	on	main	memory
• Each	core	has	a	local	private	cache	holding	data	it	has	accessed	

recently
• Only	cache	misses	have	to	access	the	shared	common	memory

Processor Processor Processor

Cache Cache Cache

Interconnection	Network

Memory I/O

21

Shared	Memory	and	Caches
• What	if?	
– Processors	1	and	2	read	Memory[1000]	(value		20)

22

Processor Processor Processor

Cache Cache Cache

Interconnection	Network

Memory I/O

1000

20

1000	

1000 1000

20

0 1 2

Shared	Memory	and	Caches
• Now:
– Processor	0	writes	Memory[1000]	with	40

23

Processor Processor Processor

Cache Cache Cache

Interconnection	Network

Memory I/O

0 1 2

1000	20 1000	20

1000

1000	40

1000	40

Problem?

Keeping	Multiple	Caches	Coherent
• Architect’s	job:	shared	memory	
=>	keep	cache	values	coherent

• Idea:	When	any	processor	has	cache	miss	or	
writes,	notify	other	processors	via	interconnection	
network
– If	only	reading,	many	processors	can	have	copies
– If	a	processor	writes,	invalidate	any	other	copies

• Write	transactions	from	one	processor,	other	
caches		“snoop”	the	common	interconnect	
checking	for	tags	they	hold
– Invalidate	any	copies	of	same	address	modified	in	other	
cache

24

Shared	Memory	and	Caches
• Example,	now	with	cache	coherence
– Processors	1	and	2	read	Memory[1000]
– Processor	0	writes	Memory[1000]	with	40

25

Processor Processor Processor

Cache Cache Cache

Interconnection	Network

Memory I/O

0 1 2

1000	20 1000	20

Processor	0
Write
Invalidates
Other	Copies

1000

1000	40

1000	40

Clickers/Peer	Instruction:
Which	statement	is	true?

• A:	Using	write-through	caches	removes	the	
need	for	cache	coherence

• B:	Every	processor	store	instruction	must	
check	contents	of	other	caches

• C:	Most	processor	load	and	store	accesses	
only	need	to	check	in	local	private	cache

• D:	Only	one	processor	can	cache	any	memory	
location	at	one	time

26

Cache	Coherency	Tracked	by	Block

• Suppose	block	size	is	32	bytes
• Suppose	Processor	0	reading	and	writing	variable	X,	Processor	

1	reading	and	writing	variable	Y
• Suppose	in	X	location	4000,		Y	in	4012
• What	will	happen?

27

Processor	0 Processor	1

4000 4000 4004 4008 4012 4016 4028
Tag 32-Byte	Data	Block

Cache	0 Cache	1

Memory

Coherency	Tracked	by	Cache	Block

• Block	ping-pongs	between	two	caches	even	
though	processors	are	accessing	disjoint	
variables

• Effect	called	false	sharing	
• How	can	you	prevent	it?

28

Review:	Understanding	Cache	Misses:
The	3Cs

• Compulsory	(cold	start	or	process	migration,	1st reference):
– First	access	to	block,	impossible	to	avoid;	small	effect	for	long-running	

programs
– Solution:	increase	block	size	(increases	miss	penalty;	very	large	blocks	

could	increase	miss	rate)
• Capacity (not	compulsory	and…)

– Cache	cannot	contain	all	blocks	accessed	by	the	program	even	with	
perfect	replacement	policy	in	fully	associative	cache

– Solution:	increase	cache	size	(may	increase	access	time)
• Conflict	(not	compulsory	or	capacity	and…):

– Multiple	memory	locations	map	to	the	same	cache	location
– Solution	1:	increase	cache	size
– Solution	2:	increase	associativity	(may	increase	access	time)
– Solution	3:	improve	replacement	policy,	e.g..	LRU

29

Fourth	“C”	of	Cache	Misses:
Coherence	Misses

• Misses	caused	by	coherence	traffic	with	other	
processor

• Also	known	as	communication	misses	because	
represents	data	moving	between	processors	
working	together	on	a	parallel	program

• For	some	parallel	programs,	coherence	misses	
can	dominate	total	misses

30

And	in	Conclusion,	…
• Multiprocessor/Multicore	uses	Shared	
Memory
– Cache	coherency	implements	shared	memory	
even	with	multiple	copies	in	multiple	caches

– False	sharing	a	concern;	watch	block	size!
• OpenMP as	simple	parallel	extension	to	C
– Threads,	Parallel	 for,	private,	reductions	…	
– ≈	C:	small	so	easy	to	learn,	but	not	very	high	level	
and	it’s	easy	to	get	into	trouble

– Much	we	didn’t	cover	– including	other	
synchronization	mechanisms	(locks,	etc.)

31

