
CS 61C: Great Ideas in Computer 
Architecture (Machine Structures)

Operating Systems, Interrupts, 
Virtual Memory

Instructors:
John Wawrzynek & Vladimir Stojanovic
http://inst.eecs.berkeley.edu/~cs61c/

1



Memory

CS61C so far…

2

CPU

Caches

MIPS Assembly

C Programs
#include <stdlib.h>

int fib(int n) {
return
fib(n-1) +
fib(n-2);

}

.foo
lw $t0, 4($r0)
addi $t1, $t0, 3
beq $t1, $t2, foo
nop

Project 1

Project 2

Labs



So how is this any different?

3

Keyboard

Screen

Storage



Memory

Adding I/O

4

CPU

Caches

MIPS Assembly

C Programs
#include <stdlib.h>

int fib(int n) {
return
fib(n-1) +
fib(n-2);

}

.foo
lw $t0, 4($r0)
addi $t1, $t0, 3
beq $t1, $t2, foo
nop

Project 1

Project 2

I/O (Input/Output)

Screen Keyboard Storage



CPU+$s, etc.
Memory

Raspberry Pi ($40 on Amazon)

5

Storage I/O
(Micro SD Card)

Serial I/O
(USB)

Network I/O
(Ethernet)Screen I/O

(HDMI)



It’s a real computer!

6



But wait…

7

• That’s not the same! When we run MARS, it only 
executes one program and then stops.

• When I switch on my computer, I get this:

Yes, but that’s just software! The Operating System (OS)



Well, “just software”

• The biggest piece of software on your machine?
• How many lines of code? These are guesstimates:

8

Codebases (in millions of lines of code). CC BY-NC 3.0 — David McCandless © 2013
http://www.informationisbeautiful.net/visualizations/million-lines-of-code/ 



What does the OS do?

9

• One of the first things that runs when your computer 
starts (right after firmware/bootloader)

• Loads, runs and manages programs:
– Multiple programs at the same time (time-sharing)
– Isolate programs from each other (isolation)
– Multiplex resources between applications (e.g., devices)

• Services: File System, Network stack, etc.
• Finds and controls all the devices in the machine in a 

general way (using “device drivers”)



Agenda

10

• Devices and I/O
• OS Boot Sequence and Operation
• Multiprogramming/time-sharing
• Introduction to Virtual Memory



Agenda

11

• Devices and I/O
• OS Boot Sequence and Operation
• Multiprogramming/time-sharing
• Introduction to Virtual Memory



How to interact with devices?

12

• Assume a program running on a CPU. How does it 
interact with the outside world?

• Need I/O interface for Keyboards,
Network, Mouse, Screen, etc.
– Connect to many types of devices 
– Control these devices, respond

to them, and transfer data
– Present them to user

programs so
they are useful

cmd reg.
data reg.

Operating System

Proc Mem

PCI Bus

SCSI Bus



Instruction Set Architecture for I/O

• What must the processor do for I/O?
– Input:    reads a sequence of bytes 
– Output: writes a sequence of bytes

• Some processors have special input and output 
instructions

• Alternative model (used by MIPS):
– Use loads for input, stores for output (in small pieces)
– Called Memory Mapped Input/Output
– A portion of the address space dedicated to 

communication paths to Input or Output devices (no 
memory there)

13



Memory Mapped I/O

• Certain addresses are not regular memory
• Instead, they correspond to registers in I/O devices

cntrl reg.
data reg.

0

0xFFFFFFFF

0xFFFF0000

address

14



Processor-I/O Speed Mismatch

• 1GHz microprocessor can execute 1B load or store 
instructions per second, or 4,000,000 KB/s data rate
• I/O data rates range from 0.01 KB/s to 1,250,000 KB/s

• Input: device may not be ready to send data as fast as 
the processor loads it
• Also, might be waiting for human to act

• Output: device not be ready to accept data as fast as 
processor stores it

• What to do?

15



Processor Checks Status before Acting

• Path to a device generally has 2 registers:
• Control Register, says it’s OK to read/write  (I/O ready) [think 

of a flagman on a road]
• Data Register, contains data

• Processor reads from Control Register in loop, waiting 
for device to set Ready bit in Control reg
(0  1) to say it’s OK

• Processor then loads from (input) or writes to (output) 
data register
• Load from or Store into Data Register resets Ready bit

(1  0) of Control Register
• This is called “Polling”

16



• Input: Read from keyboard into $v0
lui $t0, 0xffff #ffff0000

Waitloop: lw $t1, 0($t0) #control
andi $t1,$t1,0x1
beq $t1,$zero, Waitloop
lw $v0, 4($t0) #data

• Output: Write to display from $a0
lui $t0, 0xffff #ffff0000

Waitloop: lw $t1, 8($t0) #control
andi $t1,$t1,0x1
beq $t1,$zero, Waitloop
sw $a0, 12($t0) #data

“Ready” bit is from processor’s point of view!

I/O Example (polling)

17



Cost of Polling?

• Assume for a processor with a 1GHz clock it takes 
400 clock cycles for a polling operation (call polling 
routine, accessing the device, and returning). 
Determine % of processor time for polling
– Mouse: polled 30 times/sec so as not to miss user 

movement
– Hard disk: assume transfers data in 16-Byte chunks and can 

transfer at 16 MB/second. Again, no transfer can be 
missed. (we’ll come up with a better way to do this)

18



% Processor time to poll
• Mouse Polling [clocks/sec] 

= 30 [polls/s] * 400 [clocks/poll] = 12K [clocks/s]

• % Processor for polling: 
12*103 [clocks/s] / 1*109 [clocks/s] = 0.0012%
 Polling mouse little impact on processor

19



Clicker Time
Hard disk: transfers data in 16-Byte chunks and can 
transfer at 16 MB/second. No transfer can be missed. 
What percentage of processor time is spent in polling 
(assume 1GHz clock)?

• A: 2%
• B: 4%
• C: 20%
• D: 40%
• E: 80%

20



% Processor time to poll hard disk
• Frequency of Polling Disk

= 16 [MB/s] / 16 [B/poll] = 1M [polls/s]

• Disk Polling, Clocks/sec
= 1M [polls/s] * 400 [clocks/poll]
= 400M [clocks/s]

• % Processor for polling: 
400*106 [clocks/s] / 1*109 [clocks/s] = 40%
 Unacceptable 
(Polling is only part of the problem – main problem is that 

accessing in small chunks is inefficient)

21



What is the alternative to polling?

• Wasteful to have processor spend most of its time 
“spin-waiting” for I/O to be ready

• Would like an unplanned procedure call that would 
be invoked only when I/O device is ready

• Solution: use exception mechanism to help 
I/O.  Interrupt program when I/O ready, return when 
done with data transfer

• Allow to register (post) interrupt handlers: functions 
that are called when an interrupt is triggered

22



Interrupt-driven I/O

Label: sll $t1,$s3,2
addu $t1,$t1,$s5

lw $t1,0($t1) 
add  $s1,$s1,$t1

addu $s3,$s3,$s4
bne $s3,$s2,Label

Stack Frame

Stack Frame

Stack Frame

handler: lui $t0, 0xffff
lw $t1, 0($t0)
andi $t1,$t1,0x1
lw $v0, 4($t0)
sw $t1, 8($t0)
ret 

Interrupt(SPI0)

CPU Interrupt Table

SPI0 handler

… …

Handler Execution
1. Incoming interrupt suspends instruction stream
2. Looks up the vector (function address) of a handler in

an interrupt vector table stored within the CPU
3. Perform a jal to the handler (needs to store any state) 
4. Handler run on current stack and returns on finish

(thread doesn’t notice that a handler was run)

23



Administrivia

• Project 4, Performance Programming due on
Wednesday 11/18

• Project 4 competition:
– We will post the competition rules soon (After 

Wednesday). 
– We will allow you to use any optimizations that you 

want, and the top performers will receive extra credit, 
and their names will be engraved on the 61c website for 
all time.

– Competition will end 11/30.

24



Agenda

25

• Devices and I/O
• OS Boot Sequence and Operation
• Multiprogramming/time-sharing
• Introduction to Virtual Memory



What happens at boot?

26

• When the computer switches on, it does the same as 
MARS: the CPU executes instructions from some 
start address (stored in Flash ROM)

CPU

PC = 0x2000 (some default value) Address Space

0x2000:
addi $t0, $zero, 0x1000
lw $t0, 4($r0)
…

(Code to copy firmware into 
regular memory and jump 
into it)

Memory mapped



What happens at boot?

27

• When the computer switches on, it does the same as 
MARS: the CPU executes instructions from some 
start address (stored in Flash ROM)

1. BIOS: Find a storage
device and load first 
sector (block of data)

2. Bootloader (stored on, e.g., 
disk): Load the OS kernel from 
disk into a location in memory 
and jump into it.

3. OS Boot: Initialize 
services, drivers, etc.

4. Init: Launch an application 
that waits for input in loop 
(e.g., Terminal/Desktop/...



Launching Applications

28

• Applications are called “processes” in most OSs.
• Created by another process calling into an OS routine 

(using a “syscall”, more details later).
– Depends on OS, but Linux uses fork to create a new 

process, and execve to load application.

• Loads executable file from disk (using the file system 
service) and puts instructions & data into memory 
(.text, .data sections), prepare stack and heap.

• Set argc and argv, jump into the main function.



Supervisor Mode

29

• If something goes wrong in an application, it could 
crash the entire machine. And what about malware, 
etc.?

• The OS may need to enforce resource constraints to 
applications (e.g., access to devices).

• To help protect the OS from the application, CPUs have 
a supervisor mode bit.
– A process can only access a subset of instructions and 

(physical) memory when not in supervisor mode (user 
mode).

– Process can change out of supervisor mode using a special 
instruction, but not into it directly – only using an interrupt.



Syscalls

30

• What if we want to call into an OS routine? (e.g., to 
read a file, launch a new process, send data, etc.)
– Need to perform a syscall: set up function arguments in 

registers, and then raise software interrupt
– OS will perform the operation and return to user mode

• Also, OS uses interrupts for scheduling process 
execution:
– OS sets scheduler timer interrupt then drops to user mode 

and start executing a user task, when interrupts triggers, 
switch into supervisor mode, select next task to execute (& 
set timer) and drop back to user mode.

• This way, the OS can mediate access to all resources, 
including devices and the CPU itself.



Agenda

31

• Devices and I/O
• OS Boot Sequence and Operation
• Multiprogramming/time-sharing
• Introduction to Virtual Memory



Multiprogramming

32

• The OS runs multiple applications at the same time.
• But not really (unless you have a core per process)
• Switches between processes very quickly. This is 

called a “context switch”.
• When jumping into process, set timer interrupt.

– When it expires, store PC, registers, etc. (process state).
– Pick a different process to run and load its state.
– Set timer, change to user mode, jump to the new PC.

• Deciding what process to run is called scheduling.



Protection, Translation, Paging

33

• Supervisor mode does not fully isolate applications 
from each other or from the OS.
– Application could overwrite another application’s memory.
– Also, may want to address more memory than we actually 

have (e.g., for sparse data structures).

• Solution: Virtual Memory. Gives each process the 
illusion of a full memory address space that it has 
completely for itself.



Agenda

34

• Devices and I/O
• OS Boot Sequence and Operation
• Multiprogramming/time-sharing
• Introduction to Virtual Memory



36

“Bare” 5-Stage Pipeline

• In a bare machine, the only kind of address is a 
physical address

PC
Inst. 
Cache D Decode E M

Data 
Cache W+

Main Memory (DRAM)

Memory Controller

Physical 
Address

Physical 
Address

Physical 
Address

Physical 
Address

Physical Address



Dynamic Address Translation

37

Motivation
Multiprogramming, multitasking:  Desire to 
execute more than one process at a time (more 
than one process can reside in main memory at 
the same time).

Location-independent programs
Programming and storage management ease
⇒ base register – add offset to each address

Protection
Independent programs should not affect
each other inadvertently
⇒ bound register – check range of access

(Note: Multiprogramming drives requirement for 
resident supervisor (OS) software to manage context 
switches between multiple programs)

prog1

prog2

Ph
ys

ic
al

 M
em

or
y

OS



Simple Base and Bound Translation

38

Load X

Program
Address Space

Bound
Register

Bounds
Violation?

Ph
ys

ic
al

 M
em

or
y

current
segment

Base
Register

+

Physical
AddressLogical

Address

Base and bounds registers are visible/accessible only 
when processor is running in supervisor mode

Base Physical Address

Segment Length

≤



Base and Bound Machine

[ Can fold addition of base register into (register+immediate) address 
calculation using a carry-save adder (sums three numbers with only a few 
gate delays more than adding two numbers) ] 40

PC
Inst. 
Cache D Decode E M

Data 
Cache W+

Main Memory (DRAM)

Memory Controller

Physical 
Address

Physical 
Address

Physical 
Address

Physical Address

Data Bound 
Register

Data Base 
Register

≤

+

Logical 
Address

Bounds Violation?

Physical 
Address

Prog. Bound 
Register

Program Base 
Register

≤

+

Logical 
Address

Bounds Violation?



Memory Fragmentation

41

As users come and go, the storage is “fragmented”. 
Therefore, at some stage programs have to be moved
around to compact the storage.

OS
Space

16K
24K

24K

32K

24K

user 1
user 2

user 3

OS
Space

16K
24K
16K

32K

24K

user 1
user 2

user 3

user 5

user 4
8K

Users 4 & 5 
arrive

Users 2 & 5
leave OS

Space

16K
24K
16K

32K

24K

user 1

user 4
8K

user 3

free



42

• Processor-generated address can be split into:

Paged Memory Systems

Page tables make it possible to store the 
pages of a program non-contiguously.

0
1
2
3

0
1
2
3

Address Space
of User-1

Page Table 
of User-1

1
0

2

3

page number      offset

Physical 
Memory

• A page table contains the physical address of the base of each page



43

Private Address Space per User

• Each user has a page table 
• Page table contains an entry for each user page

VA1User 1

Page Table 

VA1User 2

Page Table 

VA1User 3

Page Table

Ph
ys

ic
al

 M
em

or
y

free

OS
pages



44

Where Should Page Tables Reside?
• Space required by the page tables (PT) is proportional 

to the address space, number of users, ...
⇒ Too large to keep in cpu registers

• Idea: Keep PTs in the main memory
– Needs one reference to retrieve the page base address and 

another to access the data word
⇒ doubles the number of memory references!



45

Page Tables in Physical Memory

VA1

User 1 Virtual 
Address Space

User 2 Virtual 
Address Space

PT 
User 
1 

PT 
User 
2 

VA1

Ph
ys

ic
al

 M
em

or
y



In Conclusion

46

• Once we have a basic machine, it’s mostly up to the 
OS to use it and define application interfaces.

• Hardware helps by providing the right abstractions 
and features (e.g., Virtual Memory, I/O).

• If you want to learn more about operating systems, 
you should take CS162!

• What’s next in CS61C?
– More details on I/O
– More about Virtual Memory


	CS 61C: Great Ideas in Computer Architecture (Machine Structures)�Operating Systems, Interrupts, Virtual Memory
	CS61C so far…
	So how is this any different?
	Adding I/O
	Raspberry Pi ($40 on Amazon)
	It’s a real computer!
	But wait…
	Well, “just software”
	What does the OS do?
	Agenda
	Agenda
	How to interact with devices?
	Instruction Set Architecture for I/O
	Memory Mapped I/O
	Processor-I/O Speed Mismatch
	Processor Checks Status before Acting
	I/O Example (polling)
	Cost of Polling?
	% Processor time to poll
	Clicker Time
	% Processor time to poll hard disk
	What is the alternative to polling?
	Interrupt-driven I/O
	Administrivia
	Agenda
	What happens at boot?
	What happens at boot?
	Launching Applications
	Supervisor Mode
	Syscalls
	Agenda
	Multiprogramming
	Protection, Translation, Paging
	Agenda
	“Bare” 5-Stage Pipeline
	Dynamic Address Translation
	Simple Base and Bound Translation
	Base and Bound Machine
	Memory Fragmentation
	Paged Memory Systems
	Private Address Space per User
	Where Should Page Tables Reside?
	Page Tables in Physical Memory
	In Conclusion

