
CS 61C:
Great Ideas in Computer Architecture

Virtual Memory

Instructors:
John Wawrzynek & Vladimir Stojanovic
http://inst.eecs.berkeley.edu/~cs61c/

1

Review
• Programmed I/O
• Polling vs. Interrupts
• Booting a Computer

– BIOS, Bootloader, OS Boot, Init
• Supervisor Mode, Syscalls
• Base and Bounds

– Simple, but doesn’t give us everything we want
• Intro to VM

2

3

Traps/Interrupts/Execeptions:

altering the normal flow of control

Ii-1 HI1

HI2

HIn

Ii

Ii+1

program
trap
handler

An external or internal event that needs to be processed - by
another program – the OS. The event is often unexpected from
original program’s point of view.

Terminology
In CS61C (you’ll see other definitions in use
elsewhere):
• Interrupt – caused by an event external to current

running program (e.g. key press, mouse activity)
– Asynchronous to current program, can handle

interrupt on any convenient instruction
• Exception – caused by some event during

execution of one instruction of current running
program (e.g., bus error, illegal instruction)
– Synchronous, must handle exception on instruction

that causes exception
• Trap – action of servicing interrupt or exception

by hardware jump to “trap handler” code
4

Precise Traps
• Trap handler’s view of machine state is that every

instruction prior to the trapped one has completed, and
no instruction after the trap has executed.

• Implies that handler can return from an interrupt by
restoring user registers and jumping back to interrupted
instruction (EPC register will hold the instruction address)
– Interrupt handler software doesn’t need to understand the

pipeline of the machine, or what program was doing!
– More complex to handle trap caused by an exception than

interrupt
• Providing precise traps is tricky in a pipelined superscalar

out-of-order processor!
– But handling imprecise interrupts in software is even worse.

5

6

Trap Handling in 5-Stage Pipeline

• How to handle multiple simultaneous
exceptions in different pipeline stages?

• How and where to handle external
asynchronous interrupts?

PC
Inst.
Mem D Decode E M

Data
Mem W+

Illegal
Opcode Overflow Data address

Exceptions
PC address
Exception

Asynchronous Interrupts

7

Save Exceptions Until Commit

PC
Inst.
Mem D Decode E M

Data
Mem W+

Illegal
Opcode

Overflow Data address
Exceptions

PC address
Exception

Asynchronous
Interrupts

Exc
D

PC
D

Exc
E

PC
E

Exc
M

PC
M

C
au

se
EP

C

Kill D
Stage

Kill F
Stage

Kill E
Stage

Select
Handler
PC

Kill
Writeback

Commit
Point

8

Handling Traps in In-Order Pipeline

• Hold exception flags in pipeline until commit point (M
stage)

• Exceptions in earlier instructions override exceptions
in later instructions

• Exceptions in earlier pipe stages override later
exceptions for a given instruction

• Inject external interrupts at commit point (override
others)

• If exception/interrupt at commit: update Cause and
EPC registers, kill all stages, inject handler PC into
fetch stage

9

Trap Pipeline Diagram
time
t0 t1 t2 t3 t4 t5 t6 t7

(I1) 096: ADD IF1 ID1 EX1 MA1 - overflow!
(I2) 100: XOR IF2 ID2 EX2 - -
(I3) 104: SUB IF3 ID3 - - -
(I4) 108: ADD IF4 - - - -
(I5) Trap Handler code IF5 ID5 EX5 MA5 WB5

In the News …

10

Virtual Memory

11

12

“Bare” 5-Stage Pipeline

• In a bare machine, the only kind of address
is a physical address

PC
Inst.
Cache D Decode E M

Data
Cache W+

Main Memory (DRAM)

Memory Controller

Physical
Address

Physical
Address

Physical
Address

Physical
Address

Physical Address

What do we need Virtual Memory for?
Reason 1: Adding Disks to Hierarchy

• Need to devise a mechanism to “connect”
memory and disk in the memory hierarchy

13

What do we need Virtual Memory for?
Reason 2: Simplifying Memory for Apps
• Applications should see

the straightforward
memory layout we saw
earlier ->

• User-space applications
should think they own
all of memory

• So we give them a
virtual view of memory

14

code

static data

heap

stack~ 7FFF FFFFhex

~ 0000 0000hex

What do we need Virtual Memory for?
Reason 3: Protection Between Processes
• With a bare system, addresses issued with

loads/stores are real physical addresses
• This means any program can issue any address,

therefore can access any part of memory, even
areas which it doesn’t own
– Ex: The OS data structures

• We should send all addresses through a
mechanism that the OS controls, before they
make it out to DRAM - a translation mechanism

15

Address Spaces
• The set of addresses labeling all of memory

that we can access
• Now, 2 kinds:

– Virtual Address Space - the set of addresses that
the user program knows about

– Physical Address Space - the set of addresses that
map to actual physical cells in memory

• Hidden from user applications

• So, we need a way to map between these two
address spaces

16

Blocks vs. Pages

• In caches, we dealt with individual blocks
– Usually ~64B on modern systems
– We could “divide” memory into a set of blocks

• In VM, we deal with individual pages
– Usually ~4 KB on modern systems
– Now, we’ll “divide” memory into a set of pages

• Common point of confusion: Bytes, Words,
Blocks, Pages are all just different ways of
looking at memory!

17

Bytes, Words, Blocks, Pages
Ex: 16 KiB DRAM, 4 KiB Pages (for VM), 128 B
blocks (for caches), 4 B words (for lw/sw)

18

Page 3

Page 2

Page 1

Page 0

16
KiB

Block 0

Block 31

Word 0

Word 31

1 Memory

1 Page 1 Block

Can think of
memory as:
- 4 Pages
OR
- 128 Blocks
OR
- 4096 Words

Can think of
a page as:
- 32 Blocks
OR
- 1024 Words

Address Translation

• So, what do we want to achieve at the
hardware level?
– Take a Virtual Address, that points to a spot in the

Virtual Address Space of a particular program, and
map it to a Physical Address, which points to a
physical spot in DRAM of the whole machine

19

Virtual Page Number OffsetVirtual Address

Physical Address Physical Page Number Offset

Address Translation

20

Virtual Page Number Offset

Physical Page Number Offset

Virtual Address

Physical Address

Address
Translation

Copy
Bits

The rest of the lecture is all about implementing

21

• Processor-generated address can be split into:

Paged Memory Systems

Page tables make it possible to store the
pages of a program non-contiguously.

0
1
2
3

0
1
2
3

Address Space
of Program #1

Page Table
of Program #1

1
0

2

3

Physical
Memory

• A page table contains the physical address of the base
of each page

Virtual Page Number Offset

22

Private (Virtual) Address Space per Program

VA1Prog 1

Page Table

VA1Prog 2

Page Table

VA1Prog 3

Page Table

Ph
ys

ic
al

 M
em

or
y

free

OS
pages

• Each prog has a page table
• Page table contains an entry for each prog page
• Physical Memory acts like a “cache” of pages for currently

running programs. Not recently used pages are stored
in secondary memory, e.g. disk (in “swap partition”)

23

Where Should Page Tables Reside?
• Space required by the page tables (PT) is proportional

to the address space, number of users, ...
⇒ Too large to keep in registers inside CPU

• Idea: Keep page tables in the main memory
– Needs one reference to retrieve the page base address and

another to access the data word
⇒ doubles the number of memory references! (but we can

fix this using something we already know about…)

24

Page Tables in Physical Memory

VA1

Prog 1 Virtual
Address Space

Prog 2 Virtual
Address Space

PT
Prog1

PT
Prog2

VA1

Ph
ys

ic
al

 M
em

or
y

MT2 Grades Posted

25

62%

Administrivia
• Upcoming Lecture Schedule

– 11/19: VM (today)
– 11/24: I/O: DMA, Disks, Networking
– 11/26: Thanksgiving Holiday (no class)
– 12/01: Dependability: Parity, ECC, RAID

• Last day of new material

– 12/03: Summary, What’s Next? (+ HKN reviews)

26

Administrivia
• Okay to turn-in HW4 today (without slip charge)
• Project 4 programming competition rules posted.

– Competition will end 11/30.
• Last HW (5) Virtual Memory

– Due 12/06 (Sunday after end of classes)
• Last project (5): Spark

– 5-1: posted, due 11/24 (next Wednesday)
– 5-2: due 12/06 (Sunday after end of classes)

• Final Exam is Friday (12/18)
– 7-10PM, RSF Field House
– More info soon on review sessions, etc.

27

28

Linear (simple) Page Table

VPN Offset
Virtual address

PT Base Register

VPN

Data word

Data Pages

Offset

PPN
PPN

DPN
PPN

PPN
PPN
Page Table

DPN

PPN

DPN
DPN

DPN
PPN

• Page Table Entry (PTE)
contains:
– 1 bit to indicate if page exists
– And either PPN or DPN:
– PPN (physical page number)

for a memory-resident page
– DPN (disk page number) for a

page on the disk
– Status bits for protection and

usage (read, write, exec)
• OS sets the Page Table Base

Register whenever active
user process changes

29

Suppose an instruction references a
memory page that isn’t in DRAM?

• We get a exception of type “page fault”
• Page fault handler does the following:

– If virtual page doesn’t yet exist, assign an unused page in
DRAM, or if page exists …

– Initiate transfer of the page we’re requesting from disk to
DRAM, assigning to an unused page

– If no unused page is left, a page currently in DRAM is
selected to be replaced (based on usage)

– The replaced page is written (back) to disk, page table
entry that maps that VPN->PPN is marked as invalid/DPN

– Page table entry of the page we’re requesting is updated
with a (now) valid PPN

30

Size of Linear Page Table
With 32-bit memory addresses, 4-KB pages:

⇒ 232 / 212 = 220 virtual pages per user, assuming 4-Byte PTEs,
⇒ 220 PTEs, i.e, 4 MB page table per user!

Larger pages?
• Internal fragmentation (Not all memory in page gets used)
• Larger page fault penalty (more time to read from disk)

What about 64-bit virtual address space???
• Even 1MB pages would require 244 8-Byte PTEs (35 TB!)

What is the “saving grace” ? Most processes only use a set of
high address (stack), and a set of low address (instructions,
heap)

31

Hierarchical Page Table – exploits
sparcity of virtual address space use

Level 1
Page Table

Level 2
Page Tables

Data Pages

page in primary memory
page in secondary memory

Root of the Current
Page Table

p1

p2

Virtual Address

(Processor
Register)

PTE of a nonexistent page

p1 p2 offset
01112212231

10-bit
L1 index

10-bit
L2 index

Ph
ys

ic
al

 M
em

or
y

32

Address Translation & Protection

• Every instruction and data access needs address
translation and protection checks

A good VM design needs to be fast (~ one cycle) and
space efficient

Physical Address

Virtual Address

Address
Translation

Virtual Page No. (VPN) offset

Physical Page No. (PPN) offset

Protection
Check

Exception?

Kernel/User Mode

Read/Write

33

Translation Lookaside Buffers (TLB)
Address translation is very expensive!

In a two-level page table, each reference
becomes several memory accesses

Solution: Cache some translations in TLB
TLB hit ⇒ Single-Cycle Translation
TLB miss ⇒ Page-Table Walk to refill

VPN offset

V R W D tag PPN

physical address PPN offset

virtual address

hit?

(VPN = virtual page number)

(PPN = physical page number)

34

TLB Designs
• Typically 32-128 entries, usually fully associative

– Each entry maps a large page, hence less spatial locality across
pages => more likely that two entries conflict

– Sometimes larger TLBs (256-512 entries) are 4-8 way set-
associative

– Larger systems sometimes have multi-level (L1 and L2) TLBs
• Random or FIFO replacement policy
• “TLB Reach”: Size of largest virtual address space that can

be simultaneously mapped by TLB

Example: 64 TLB entries, 4KB pages, one page per entry

TLB Reach =
___?

VM-related events in pipeline

• Handling a TLB miss needs a hardware or
software mechanism to refill TLB
– usually done in hardware now

• Handling a page fault (e.g., page is on disk) needs
a precise trap so software handler can easily
resume after retrieving page

• Handling protection violation may abort process
35

PC
Inst
TLB

Inst.
Cache D Decode E M

Data
TLB

Data
Cache W+

TLB miss? Page Fault?
Protection violation?

TLB miss? Page Fault?
Protection violation?

36

Hierarchical Page Table Walk: SPARC v8

31 11 0

Virtual Address Index 1 Index 2 Index 3 Offset
31 23 17 11 0

Context
Table
Register

Context
Register

root ptr

PTP
PTP

PTE

Context Table

L1 Table

L2 Table
L3 Table

Physical Address PPN Offset

MMU does this table walk in hardware on a TLB miss

37

Page-Based Virtual-Memory Machine
(Hardware Page-Table Walk)

PC
Inst.
TLB

Inst.
Cache D Decode E M

Data
Cache W+

Page Fault?
Protection violation?

Page Fault?
Protection violation?

• Assumes page tables held in untranslated physical memory

Data
TLB

Main Memory (DRAM)

Memory Controller
Physical
Address

Physical
Address

Physical Address

Physical
Address

Page-Table Base
Register

Virtual
Address Physical

Address

Virtual
Address

Hardware Page
Table Walker

Miss? Miss?

38

Address Translation:
putting it all together
Virtual Address

TLB
Lookup

Page Table
Walk

Update TLBPage Fault
(OS loads page)

Protection
Check

Physical
Address
(to cache)

miss hit

the page is
∉ memory ∈ memory denied permitted

Protection
Fault

hardware
hardware or software
software

SEGFAULTWhere?

39

Modern Virtual Memory Systems
Illusion of a large, private, uniform store

Protection & Privacy
several users, each with their private
address space and one or more
shared address spaces

page table ≡ name space

Demand Paging
Provides the ability to run programs
larger than the primary memory

Hides differences in machine
configurations

The price is address translation on
each memory reference

OS

useri

Primary
Memory

Swapping Store
(Disk)

VA PAmapping
TLB

Clicker Question

Let’s try to extrapolate from caches… Which one
is false?
A. # offset bits in V.A. = log2(page size)
B. # offset bits in P.A. = log2(page size)
C. # VPN bits in V.A. = log2(# of physical pages)
D. # PPN bits in P.A. = log2(# of physical pages)
E. A single-level page table contains a PTE for
every possible VPN in the system

40

41

Conclusion: VM features track
historical uses

• Bare machine, only physical addresses
– One program owned entire machine

• Batch-style multiprogramming
– Several programs sharing CPU while waiting for I/O
– Base & bound: translation and protection between programs (not virtual

memory)
– Problem with external fragmentation (holes in memory), needed occasional

memory defragmentation as new jobs arrived
• Time sharing

– More interactive programs, waiting for user. Also, more jobs/second.
– Motivated move to fixed-size page translation and protection, no external

fragmentation (but now internal fragmentation, wasted bytes in page)
– Motivated adoption of virtual memory to allow more jobs to share limited

physical memory resources while holding working set in memory
• Virtual Machine Monitors

– Run multiple operating systems on one machine
– Idea from 1970s IBM mainframes, now common on laptops

• e.g., run Windows on top of Mac OS X
– Hardware support for two levels of translation/protection

• Guest OS virtual -> Guest OS physical -> Host machine physical
– Also basis of Cloud Computing

• Virtual machine instances on EC2 for Lab 13

	CS 61C: �Great Ideas in Computer Architecture �Virtual Memory
	Review
	Traps/Interrupts/Execeptions:�altering the normal flow of control
	Terminology
	Precise Traps
	Trap Handling in 5-Stage Pipeline
	Save Exceptions Until Commit
	Handling Traps in In-Order Pipeline
	Trap Pipeline Diagram
	In the News …
	Virtual Memory
	“Bare” 5-Stage Pipeline
	What do we need Virtual Memory for? Reason 1: Adding Disks to Hierarchy
	What do we need Virtual Memory for? Reason 2: Simplifying Memory for Apps
	What do we need Virtual Memory for? Reason 3: Protection Between Processes
	Address Spaces
	Blocks vs. Pages
	Bytes, Words, Blocks, Pages
	Address Translation
	Address Translation
	Paged Memory Systems
	Private (Virtual) Address Space per Program
	Where Should Page Tables Reside?
	Page Tables in Physical Memory
	MT2 Grades Posted
	Administrivia
	Administrivia
	Linear (simple) Page Table
	Suppose an instruction references a memory page that isn’t in DRAM?
	Size of Linear Page Table
	Hierarchical Page Table – exploits sparcity of virtual address space use
	Address Translation & Protection
	Translation Lookaside Buffers (TLB)
	TLB Designs
	VM-related events in pipeline
	Hierarchical Page Table Walk: SPARC v8
	Page-Based Virtual-Memory Machine�(Hardware Page-Table Walk)
	Address Translation:�putting it all together
	Modern Virtual Memory Systems� Illusion of a large, private, uniform store
	Clicker Question
	Conclusion: VM features track �historical uses

