
CS 61C: 
Great Ideas in Computer Architecture 

Virtual Memory

Instructors:
John Wawrzynek & Vladimir Stojanovic
http://inst.eecs.berkeley.edu/~cs61c/

1



Review
• Programmed I/O 
• Polling vs. Interrupts
• Booting a Computer

– BIOS, Bootloader, OS Boot, Init
• Supervisor Mode, Syscalls
• Base and Bounds

– Simple, but doesn’t give us everything we want
• Intro to VM
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Traps/Interrupts/Execeptions:

altering the normal flow of control

Ii-1 HI1

HI2

HIn
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program
trap
handler

An external or internal event that needs to be processed - by 
another program – the OS. The event is often unexpected from 
original program’s point of view. 



Terminology
In CS61C (you’ll see other definitions in use 
elsewhere):
• Interrupt – caused by an event external to current 

running program (e.g. key press, mouse activity)
– Asynchronous to current program, can handle 

interrupt on any convenient instruction
• Exception – caused by some event during 

execution of one instruction of current running 
program (e.g., bus error, illegal instruction)
– Synchronous, must handle exception on instruction 

that causes exception
• Trap – action of servicing interrupt or exception 

by hardware jump to “trap handler” code
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Precise Traps
• Trap handler’s view of machine state is that every 

instruction prior to the trapped one has completed, and 
no instruction after the trap has executed.

• Implies that handler can return from an interrupt by 
restoring user registers and jumping back to interrupted 
instruction (EPC register will hold the instruction address)
– Interrupt handler software doesn’t need to understand the 

pipeline of the machine, or what program was doing!
– More complex to handle trap caused by an exception than 

interrupt
• Providing precise traps is tricky in a pipelined superscalar 

out-of-order processor!
– But handling imprecise interrupts in software is even worse.
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Trap Handling in 5-Stage Pipeline

• How to handle multiple simultaneous 
exceptions in different pipeline stages?

• How and where to handle external 
asynchronous interrupts?
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Save Exceptions Until Commit
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Handling Traps in In-Order Pipeline

• Hold exception flags in pipeline until commit point (M 
stage)

• Exceptions in earlier instructions override exceptions 
in later instructions

• Exceptions in earlier pipe stages override later 
exceptions for a given instruction

• Inject external interrupts at commit point (override 
others)

• If exception/interrupt at commit: update Cause and 
EPC registers, kill all stages, inject handler PC into 
fetch stage
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Trap Pipeline Diagram
time
t0 t1 t2 t3 t4 t5 t6 t7 . . . .

(I1) 096: ADD IF1 ID1 EX1 MA1 - overflow!
(I2) 100: XOR IF2 ID2 EX2 - -
(I3) 104: SUB IF3 ID3 - - -
(I4) 108: ADD IF4 - - - -
(I5) Trap Handler code IF5 ID5 EX5 MA5 WB5



In the News …
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Virtual Memory
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“Bare” 5-Stage Pipeline

• In a bare machine, the only kind of address 
is a physical address

PC
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What do we need Virtual Memory for? 
Reason 1: Adding Disks to Hierarchy

• Need to devise a mechanism to “connect” 
memory and disk in the memory hierarchy
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What do we need Virtual Memory for? 
Reason 2: Simplifying Memory for Apps
• Applications should see 

the straightforward 
memory layout we saw 
earlier ->

• User-space applications 
should think they own 
all of memory

• So we give them a 
virtual view of memory
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What do we need Virtual Memory for? 
Reason 3: Protection Between Processes
• With a bare system, addresses issued with 

loads/stores are real physical addresses
• This means any program can issue any address, 

therefore can access any part of memory, even 
areas which it doesn’t own
– Ex: The OS data structures

• We should send all addresses through a 
mechanism that the OS controls, before they 
make it out to DRAM - a translation mechanism

15



Address Spaces
• The set of addresses labeling all of memory 

that we can access
• Now, 2 kinds:

– Virtual Address Space - the set of addresses that 
the user program knows about

– Physical Address Space - the set of addresses that 
map to actual physical cells in memory

• Hidden from user applications

• So, we need a way to map between these two 
address spaces

16



Blocks vs. Pages

• In caches, we dealt with individual blocks
– Usually ~64B on modern systems
– We could “divide” memory into a set of blocks

• In VM, we deal with individual pages
– Usually ~4 KB on modern systems
– Now, we’ll “divide” memory into a set of pages

• Common point of confusion: Bytes, Words, 
Blocks, Pages are all just different ways of 
looking at memory!
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Bytes, Words, Blocks, Pages
Ex: 16 KiB DRAM, 4 KiB Pages (for VM), 128 B 
blocks (for caches), 4 B words (for lw/sw)
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Address Translation

• So, what do we want to achieve at the 
hardware level?
– Take a Virtual Address, that points to a spot in the 

Virtual Address Space of a particular program, and 
map it to a Physical Address, which points to a 
physical spot in DRAM of the whole machine
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Address Translation
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Virtual Page Number Offset

Physical Page Number Offset

Virtual Address

Physical Address

Address 
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Copy 
Bits

The rest of the lecture is all about implementing
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• Processor-generated address can be split into:

Paged Memory Systems

Page tables make it possible to store the 
pages of a program non-contiguously.
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• A page table contains the physical address of the base 
of each page

Virtual Page Number Offset
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Private (Virtual) Address Space per Program

VA1Prog 1

Page Table 

VA1Prog 2

Page Table

VA1Prog 3

Page Table
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free

OS
pages

• Each prog has a page table 
• Page table contains an entry for each prog page
• Physical Memory acts like a “cache” of pages for currently 

running programs.  Not recently used pages are stored 
in secondary memory, e.g. disk (in “swap partition”)
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Where Should Page Tables Reside?
• Space required by the page tables (PT) is proportional 

to the address space, number of users, ...
⇒ Too large to keep in registers inside CPU

• Idea: Keep page tables in the main memory
– Needs one reference to retrieve the page base address and 

another to access the data word
⇒ doubles the number of memory references! (but we can 

fix this using something we already know about…)
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Page Tables in Physical Memory
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MT2 Grades Posted
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62%



Administrivia
• Upcoming Lecture Schedule

– 11/19: VM (today)
– 11/24: I/O: DMA, Disks, Networking
– 11/26: Thanksgiving Holiday (no class)
– 12/01: Dependability: Parity, ECC, RAID

• Last day of new material

– 12/03: Summary, What’s Next? (+ HKN reviews)

26



Administrivia
• Okay to turn-in HW4 today (without slip charge)
• Project 4 programming competition rules posted.

– Competition will end 11/30.
• Last HW (5) Virtual Memory

– Due 12/06 (Sunday after end of classes) 
• Last project (5): Spark

– 5-1: posted, due 11/24 (next Wednesday)
– 5-2: due 12/06 (Sunday after end of classes)

• Final Exam is Friday (12/18)
– 7-10PM, RSF Field House
– More info soon on review sessions, etc.
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Linear (simple) Page Table

VPN Offset
Virtual address

PT Base Register

VPN

Data word

Data Pages

Offset

PPN
PPN

DPN
PPN

PPN
PPN
Page Table

DPN

PPN

DPN
DPN

DPN
PPN

• Page Table Entry (PTE) 
contains:
– 1 bit to indicate if page exists
– And either PPN or DPN:
– PPN (physical page number) 

for a memory-resident page
– DPN (disk page number) for a 

page on the disk
– Status bits for protection and 

usage (read, write, exec)
• OS sets the Page Table Base 

Register whenever active 
user process changes
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Suppose an instruction references a 
memory page that isn’t in DRAM?

• We get a exception of type “page fault”
• Page fault handler does the following:

– If virtual page doesn’t yet exist, assign an unused page in 
DRAM, or if page exists …

– Initiate transfer of the page we’re requesting from disk to 
DRAM, assigning to an unused page

– If no unused page is left, a page currently in DRAM is
selected to be replaced (based on usage)

– The replaced page is written (back) to disk, page table 
entry that maps that VPN->PPN is marked as invalid/DPN

– Page table entry of the page we’re requesting is updated 
with a (now) valid PPN
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Size of Linear Page Table
With 32-bit memory addresses, 4-KB pages:

⇒ 232 / 212 = 220 virtual pages per user, assuming 4-Byte PTEs, 
⇒ 220 PTEs, i.e, 4 MB page table per user!

Larger pages?
• Internal fragmentation (Not all memory in page gets used)
• Larger page fault penalty (more time to read from disk)

What about 64-bit virtual address space???
• Even 1MB pages would require 244  8-Byte PTEs (35 TB!)

What is the “saving grace” ? Most processes only use a set of 
high address (stack), and a set of low address (instructions, 
heap)
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Hierarchical Page Table – exploits 
sparcity of virtual address space use
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Address Translation & Protection

• Every instruction and data access needs address 
translation and protection checks

A good VM design needs to be fast (~ one cycle) and 
space efficient

Physical Address

Virtual Address

Address
Translation

Virtual Page No. (VPN) offset

Physical Page No. (PPN) offset

Protection
Check

Exception?

Kernel/User Mode

Read/Write
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Translation Lookaside Buffers (TLB)
Address translation is very expensive!

In a two-level page table, each reference 
becomes several memory accesses

Solution: Cache some translations in TLB
TLB hit ⇒ Single-Cycle Translation
TLB miss ⇒ Page-Table Walk to refill 

VPN   offset

V R W D    tag        PPN

physical address PPN offset

virtual address

hit?

(VPN = virtual page number)

(PPN = physical page number)
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TLB Designs
• Typically 32-128 entries, usually fully associative

– Each entry maps a large page, hence less spatial locality across 
pages => more likely that two entries conflict

– Sometimes larger TLBs (256-512 entries) are 4-8 way set-
associative

– Larger systems sometimes have multi-level (L1 and L2) TLBs
• Random or FIFO replacement policy
• “TLB Reach”: Size of largest virtual address space that can 

be simultaneously mapped by TLB

Example: 64 TLB entries, 4KB pages, one page per entry

TLB Reach = 
_____________________________________________?



VM-related events in pipeline

• Handling a TLB miss needs a hardware or 
software mechanism to refill TLB
– usually done in hardware now

• Handling a page fault (e.g., page is on disk) needs 
a precise trap so software handler can easily 
resume after retrieving page

• Handling protection violation may abort process
35
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Hierarchical Page Table Walk: SPARC v8

31 11       0

Virtual Address Index 1 Index 2      Index 3       Offset
31 23            17             11         0

Context
Table
Register

Context
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root ptr

PTP
PTP

PTE

Context Table

L1 Table

L2 Table
L3 Table

Physical Address PPN Offset

MMU does this table walk in hardware on a TLB miss
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Page-Based Virtual-Memory Machine
(Hardware Page-Table Walk)

PC
Inst. 
TLB

Inst. 
Cache D Decode E M

Data 
Cache W+

Page Fault?
Protection violation?

Page Fault?
Protection violation?

• Assumes page tables held in untranslated physical memory

Data 
TLB

Main Memory (DRAM)

Memory Controller
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Address
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Page-Table Base
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Address

Virtual 
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Hardware Page 
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Miss? Miss?
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Address Translation:
putting it all together
Virtual Address

TLB
Lookup

Page Table
Walk

Update TLBPage Fault
(OS loads page)

Protection
Check

Physical
Address
(to cache)

miss hit

the  page is 
∉ memory ∈ memory denied permitted

Protection
Fault

hardware
hardware or software
software

SEGFAULTWhere?
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Modern Virtual Memory Systems
Illusion of a large, private, uniform store

Protection & Privacy
several users, each with their private 
address space and one or more 
shared address spaces

page table ≡ name space

Demand Paging
Provides the ability to run programs 
larger than the primary memory

Hides differences in machine 
configurations

The price is address translation on 
each memory reference

OS

useri

Primary
Memory

Swapping Store
(Disk)

VA PAmapping
TLB



Clicker Question

Let’s try to extrapolate from caches… Which one 
is false?
A. # offset bits in V.A. = log2(page size)
B. # offset bits in P.A. = log2(page size)
C. # VPN bits in V.A. = log2(# of physical pages)
D. # PPN bits in P.A. = log2(# of physical pages)
E. A single-level page table contains a PTE for 
every possible VPN in the system
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Conclusion: VM features track 
historical uses

• Bare machine, only physical addresses
– One program owned entire machine

• Batch-style multiprogramming
– Several programs sharing CPU while waiting for I/O
– Base & bound: translation and protection between programs (not virtual 

memory)
– Problem with external fragmentation (holes in memory), needed occasional 

memory defragmentation as new jobs arrived
• Time sharing

– More interactive programs, waiting for user.  Also, more jobs/second.
– Motivated move to fixed-size page translation and protection, no external 

fragmentation (but now internal fragmentation, wasted bytes in page)
– Motivated adoption of virtual memory to allow more jobs to share limited 

physical memory resources while holding working set in memory
• Virtual Machine Monitors

– Run multiple operating systems on one machine
– Idea from 1970s IBM mainframes, now common on laptops

• e.g., run Windows on top of Mac OS X
– Hardware support for two levels of translation/protection

• Guest OS virtual -> Guest OS physical -> Host machine physical
– Also basis of Cloud Computing

• Virtual machine instances on EC2 for Lab 13
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