CS 61C: Great Ideas in Computer Architecture

Dependability and RAID Lecture 25

Instructors: John Wawrzynek & Vladimir Stojanovic http://inst.eecs.berkeley.edu/~cs61c/

Great Idea #6: Dependability via Redundancy

- Applies to everything from datacenters to memory
 - Redundant datacenters so that can lose 1 datacenter but Internet service stays online
 - Redundant routes so can lose nodes but Internet doesn't fail
 - Redundant disks so that can lose 1 disk but not lose data (Redundant Arrays of Independent Disks/RAID)
 - Redundant memory bits of so that can lose 1 bit but no data (Error Correcting Code/ECC Memory)

Dependability via Redundancy: Time vs. Space

- Spatial Redundancy replicated data or check information or hardware to handle hard and soft (transient) failures
- Temporal Redundancy redundancy in time (retry) to handle soft (transient) failures

Dependability Measures

- Reliability: Mean Time To Failure (MTTF)
- Service interruption: Mean Time To Repair (MTTR)
- Mean time between failures (MTBF)
 MTBF = MTTF + MTTR
- Availability = MTTF / (MTTF + MTTR)
- Improving Availability
 - Increase MTTF: More reliable hardware/software + Fault Tolerance
 - Reduce MTTR: improved tools and processes for diagnosis and repair

Availability Measures

- Availability = MTTF / (MTTF + MTTR) as %
 MTTF, MTBF usually measured in hours
- Since hope rarely down, shorthand is "number of 9s of availability per year"
- 1 nine: 90% => 36 days of repair/year
- 2 nines: 99% => 3.6 days of repair/year
- 3 nines: 99.9% => 526 minutes of repair/year
- 4 nines: 99.99% => 53 minutes of repair/year
- 5 nines: 99.999% => 5 minutes of repair/year

Reliability Measures

- Another is average number of failures per year: Annualized Failure Rate (AFR)
 - E.g., 1000 disks with 100,000 hour MTTF
 - 365 days * 24 hours = 8760 hours
 - (1000 disks * 8760 hrs/year) / 100,000 = 87.6 failed disks per year on average
 - 87.6/1000 = 8.76% annual failure rate
- Google's 2007 study* found that actual AFRs for individual drives ranged from 1.7% for first year drives to over 8.6% for three-year old drives

*research.google.com/archive/disk_failures.pdf

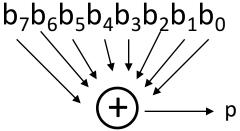
Dependability Design Principle

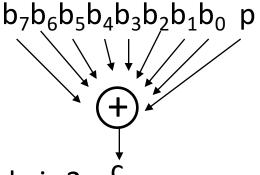
- Design Principle: No single points of failure
 "Chain is only as strong as its weakest link"
- Dependability Corollary of Amdahl's Law
 - Doesn't matter how dependable you make one portion of system
 - Dependability limited by part you do not improve

Error Detection/Correction Codes

- Memory systems generate errors (accidentally flipped-bits)
 - DRAMs store very little charge per bit
 - "Soft" errors occur occasionally when cells are struck by alpha particles or other environmental upsets
 - "Hard" errors can occur when chips permanently fail
 - Problem gets worse as memories get denser and larger
- Memories protected against failures with EDC/ECC
- Extra bits are added to each data-word
 - Used to detect and/or correct faults in the memory system
 - Each data word value mapped to unique code word
 - A fault changes valid code word to invalid one, which can be detected

Block Code Principles


- Hamming distance = difference in # of bits
- p = 0<u>1</u>1<u>0</u>11, q = 0<u>0</u>1<u>1</u>11, Ham. distance (p,q) = 2
- p = 011011,
 q = 110001,
 distance (p,q) = ?
- Can think of extra bits as creating a code with the data
- What if minimum distance between members of code is 2 and get a 1-bit error?


Richard Hamming, 1915-98 Turing Award Winner

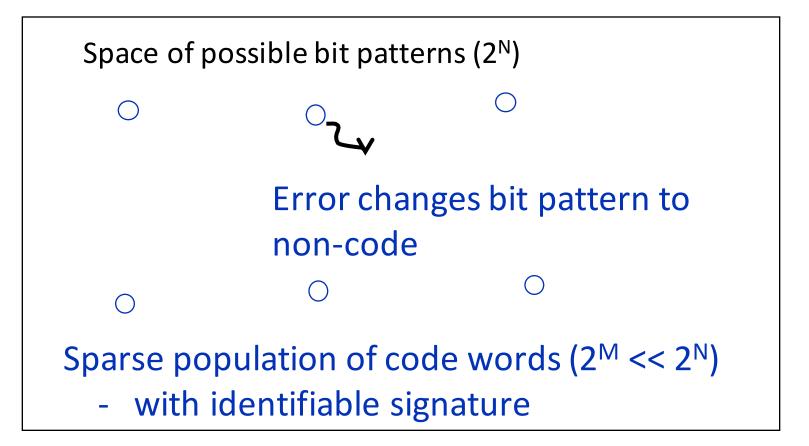
Parity: Simple Error-Detection Coding

- Each data value, before it is written to memory is "tagged" with an extra bit to force the stored word to have *even*
 - parity.

 Each word, as it is read from memory is "checked" by finding its parity (including the parity bit).

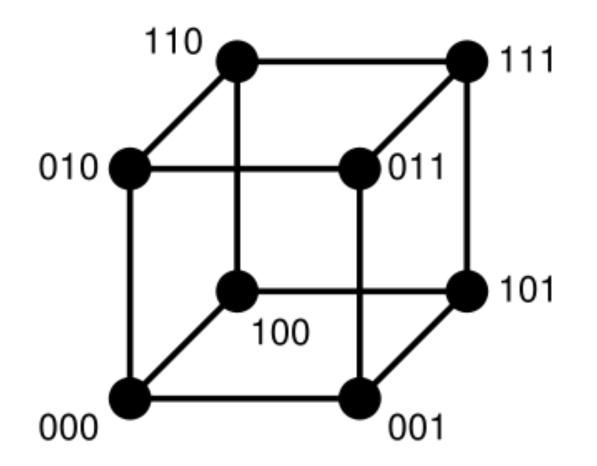
- Minimum Hamming distance of parity code is 2
- A non-zero parity check indicates an error occurred:
 - 2 errors (on different bits) are not detected
 - nor any even number of errors, just odd numbers of errors are detected

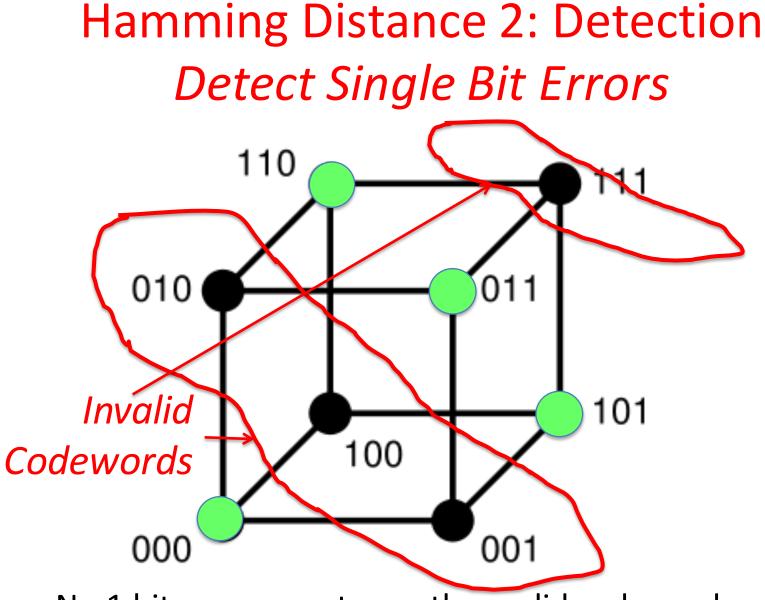
Parity Example


- Data 0101 0101
- 4 ones, even parity now
- Write to memory: 0101 0101 0 to keep parity even
- Data 0101 0111
- 5 ones, odd parity now
- Write to memory: 0101 0111 1 to make parity even

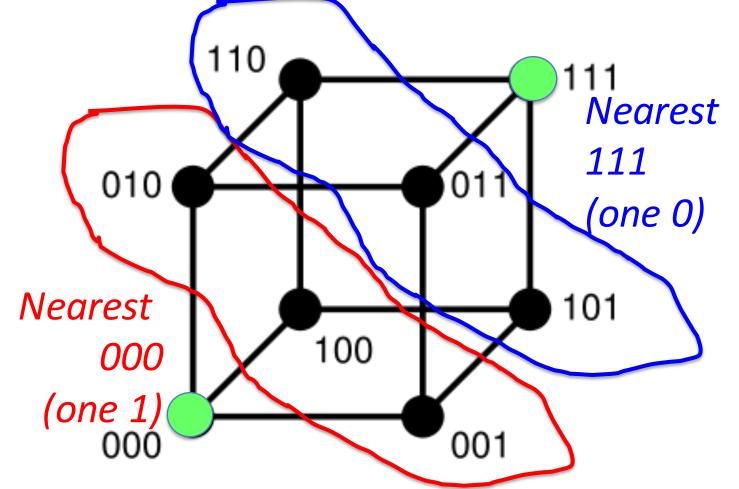
- Read from memory 0101 0101 0
- 4 ones => even parity, so no error
- Read from memory 1101 0101 0
- 5 ones => odd parity, so error
- What if error in parity bit?

Suppose Want to Correct 1 Error?


- Richard Hamming came up with simple to understand mapping to allow Error Correction at minimum distance of 3
 - Single error correction, double error detection
- Called "Hamming ECC"
 - Worked weekends on relay computer with unreliable card reader, frustrated with manual restarting
 - Got interested in error correction; published 1950
 - R. W. Hamming, "Error Detecting and Correcting Codes," *The Bell System Technical Journal*, Vol. XXVI, No 2 (April 1950) pp 147-160.


Detecting/Correcting Code Concept

- **Detection**: bit pattern fails codeword check
- Correction: map to nearest valid code word


Hamming Distance: 8 code words

- No 1 bit error goes to another valid codeword
- ¹/₂ codewords are valid

Hamming Distance 3: Correction Correct Single Bit Errors, Detect Double Bit Errors

- No 2 bit error goes to another valid codeword; 1 bit error near
- 1/4 codewords are valid

Administrivia

- Final Exam
 - FRIDAY, DEC 18, 2015, 7-10P
 - Location: WHEELER
 - Must notify Fred/William of conflicts asap
 - THREE cheat sheets (MT1,MT2, post-MT2)
- Normal OH during RRR Week, info about finals week to follow

Graphic of Hamming Code

Bit position		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Encoded data bits		p1	p2	d1	p4	d2	d3	d4	p8	d5	d6	d7	d8	d9	d10	d11
Parity bit coverage	р1	Х		X		X		X		X		X		X		X
	p2		X	X			X	X			X	X			X	X
	р4				X	X	X	X					X	X	X	X
	p8								X	X	X	X	X	X	X	X

• <u>http://en.wikipedia.org/wiki/Hamming_code</u>

Set parity bits to create even parity for each group

- A byte of data: 10011010
- Create the coded word, leaving spaces for the parity bits:
- __1_001_1010
 123456789abc-bit position

• Calculate the parity bits

- Position 1 checks bits 1,3,5,7,9,11:
 1_001_1010. set position 1 to a _:
- Position 2 checks bits 2,3,6,7,10,11:
 0?1_001_10. set position 2 to a _:
- Position 4 checks bits 4,5,6,7,12:
 0 1 1 ? 0 0 1 _ 1 0 1 0. set position 4 to a _:
- Position 8 checks bits 8,9,10,11,12:
 0 1 1 1 0 0 1 ? 1 0 1 0. set position 8 to a _:

- Position 1 checks bits 1,3,5,7,9,11:
 ?_1_001_1010. set position 1 to a 0:
 0_1_001_1010
- Position 2 checks bits 2,3,6,7,10,11:
 0?1_001_1010. set position 2 to a 1:
 011_001_1010
- Position 4 checks bits 4,5,6,7,12:
 011?001_1010. set position 4 to a 1:
 0111001_1010
- Position 8 checks bits 8,9,10,11,12:
 0 1 1 1 0 0 1 ? 1010. set position 8 to a 0:
 0 1 1 1 0 0 1 0 1010

- Final code word: <u>011100101010</u>
- Data word: 1 001 1010

Hamming ECC Error Check

Suppose receive
 <u>011100101110</u>
 011100101110

Bit position		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Encoded data bits		p1	p2	d1	p4	d2	d3	d4	p8	d5	d6	d7	d8	d9	d10	d11
Parity bit coverage	р1	Х		Х		Х		X		Х		X		X		Х
	p2		Х	Х			Х	Х			Х	Х			X	X
	p4				X	Х	Х	Х					Х	X	X	X
	p8								X	Х	X	X	Х	X	X	X

Hamming ECC Error Check

Suppose receive
 <u>011100101110</u>

Hamming ECC Error Check

- Implies position 8+2=10 is in error
 <u>011100101110</u>

Hamming ECC Error Correct

• Flip the incorrect bit ... 011100101010

Hamming ECC Error Correct

Hamming Error Correcting Code

- Overhead involved in single error-correction code
- Let *p* be total number of parity bits and *d* number of data bits in *p* + *d* bit word
- If p error correction bits are to point to error bit (p + d cases)
 + indicate that no error exists (1 case), we need:

 $2^{p} \ge p + d + 1$,

thus $p >= \log_2(p + d + 1)$

for large d, p approaches $\log_2(d)$

- 8 bits data => d = 8, 2^p >= p + 8 + 1 => p >= 4
- 16b data => 5b parity, 32b data => 6b parity, 64b data => 7b parity

Hamming Single-Error Correction, Double-Error Detection (SEC/DED)

• Adding extra parity bit covering the entire word provides double error detection as well as single error correction

1 2 3 4 5 6 7 8

 $p_1 p_2 d_1 p_3 d_2 d_3 d_4 p_4$

Hamming parity bits H (p₁ p₂ p₃) are computed (even parity as usual) plus the even parity over the entire word, p₄:

H=0 p₄=0, no error

 $H \neq 0$ $p_4=1$, correctable single error (odd parity if 1 error => $p_4=1$)

H≠0 $p_4=0$, double error occurred (even parity if 2 errors=> $p_4=0$)

H=0 p_4 =1, single error occurred in p_4 bit, not in rest of word

Typical modern codes in DRAM memory systems: 64-bit data blocks (8 bytes) with 72-bit code words (9 bytes).

What if More Than 2-Bit Errors?

- Network transmissions, disks, distributed storage common failure mode is bursts of bit errors, not just one or two bit errors
 - Contiguous sequence of *B* bits in which first, last and any number of intermediate bits are in error
 - Caused by impulse noise or by fading in wireless
 - Effect is greater at higher data rates
- Solve with Cyclic Redundancy Check (CRC), interleaving or other more advanced codes

iClicker Question

The following word is received, encoded with Hamming code:

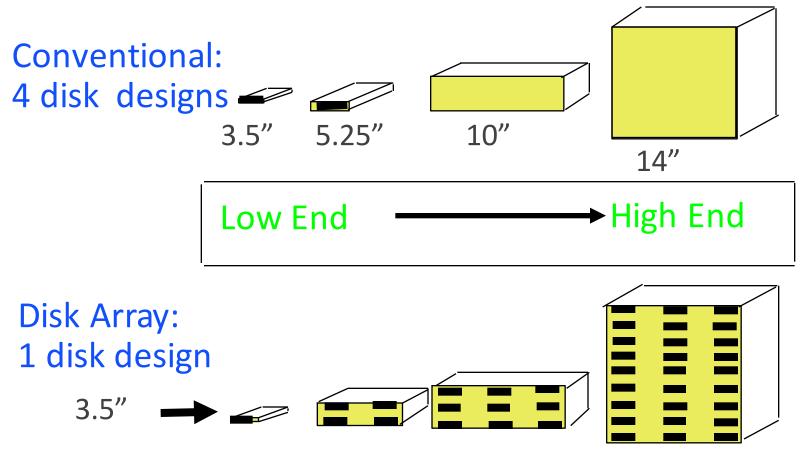
<u>0110001</u>

What is the corrected data bit sequence?

- A. 1111
- B. 0001
- C. 1101
- D. 1011
- E. 1000

Evolution of the Disk Drive

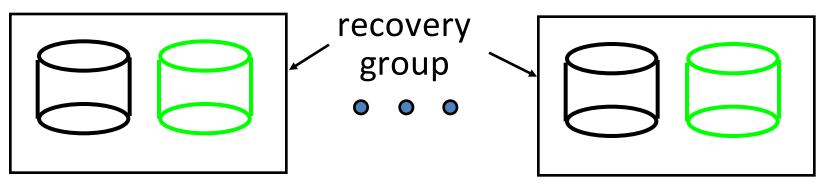
IBM 3390K, 1986


IBM RAMAC 305, 1956

Apple SCSI, 1986

Arrays of Small Disks

Can smaller disks be used to close gap in performance between disks and CPUs?


Replace Small Number of Large Disks with Large Number of												
Small Disks! (1988 Disks)												
	IBM 3390K	IBM 3.5" 0061	x70									
Capacity	20 GBytes	320 MBytes	23 GBytes									
Volume	97 cu. ft.	0.1 cu. ft.	11 cu. ft.	9X								
Power	3 KW	11 W	1 KW	3X								
Data Rate	15 MB/s	1.5 MB/s	120 MB/s	8X								
I/O Rate	600 I/Os/s	55 I/Os/s	3900 IOs/s	6X								
MTTF	250 KHrs	50 KHrs	??? Hrs	5 5 5								
Cost	\$250K	\$2K	\$150K									

Disk Arrays have potential for large data and I/O rates, high MB per cu. ft., high MB per KW, <u>but what about reliability?</u>

RAID: Redundant Arrays of (Inexpensive) Disks

- Files are "striped" across multiple disks
- Redundancy yields high data availability
 - Availability: service still provided to user, even if some components failed
- Disks will still fail
- Contents reconstructed from data redundantly stored in the array
 - See Capacity penalty to store redundant info
 - Bandwidth penalty to update redundant info

Redundant Arrays of Inexpensive Disks RAID 1: Disk Mirroring/Shadowing

- Each disk is fully duplicated onto its "mirror"
 Very high availability can be achieved
- Writes limited by single-disk speed
- Reads may be optimized

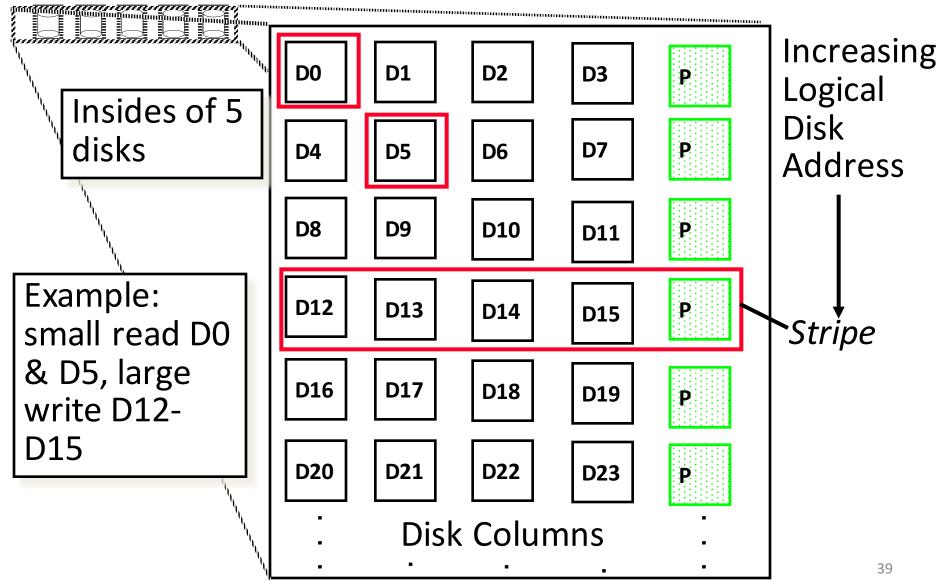
Most expensive solution: 100% capacity overhead

RAID 3: Parity Disk

10010011 11001101 10010011

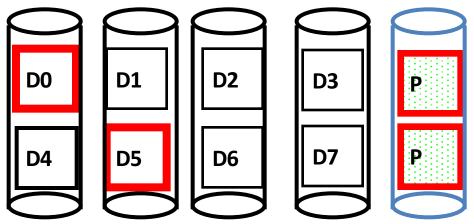
logical record Striped physical records

P contains sum of 0
other disks per stripe 0
mod 2 ("parity") 1
If disk fails, subtract 1
P from sum of other
disks to find missing information

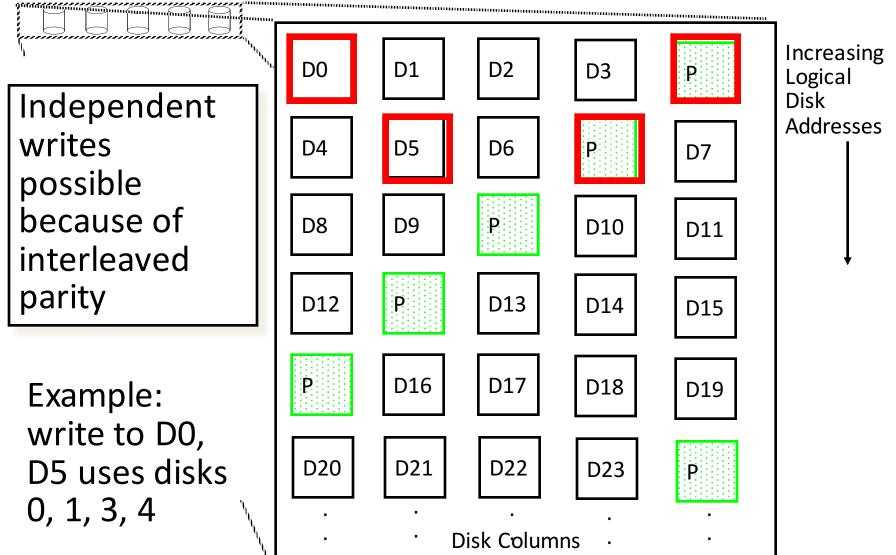

D

1

1

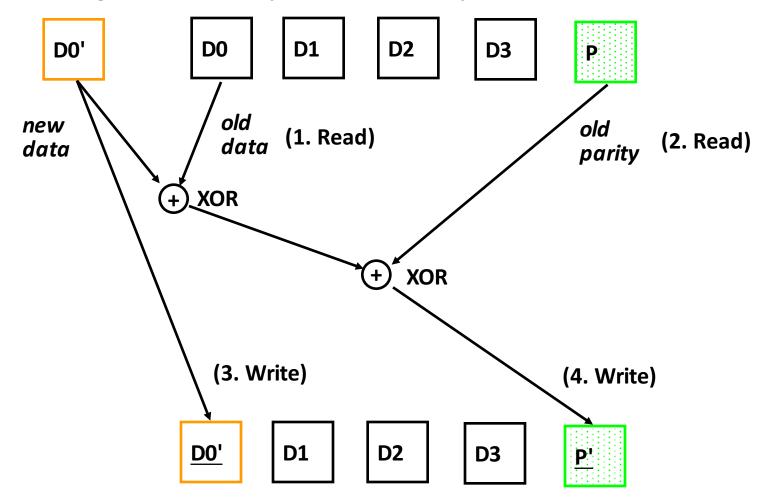

1

Redundant Arrays of Inexpensive Disks RAID 4: High I/O Rate Parity



Inspiration for RAID 5

- RAID 4 works well for small reads
- Small writes (write to one disk):
 - Option 1: read other data disks, create new sum and write to Parity Disk
 - Option 2: since P has old sum, compare old data to new data, add the difference to P
- Small writes are limited by Parity Disk: Write to D0, D5 both also write to P disk


RAID 5: High I/O Rate Interleaved Parity

Problems of Disk Arrays: Small Writes

RAID-5: Small Write Algorithm

1 Logical Write = 2 Physical Reads + 2 Physical Writes

Tech Report Read 'Round the World (December 1987)

A Case for Redundant Arrays of Inexpensive Disks (RAID)

David A. Patterson, Garth Gibson, and Randy H. Katz

Google

Scholar

About 138,000 results (0.08 sec)

Case for Raid

Articles

Legal documents

Any time

[воок] <u>A case for redundant arrays of inexpensive disks (RAID)</u> DA Patterson, <u>G Gibson</u>, <u>RH Katz</u> - 1988 - dl.acm.org

Abstract Increasing performance of CPUs and memories will be squandered if not matched by a similar performance increase in I/O. While the capacity of Single Large Expensive Disks (SLED) has grown rapidly, the performance improvement of SLED has been modest. ... Cited by 2814 Related articles All 239 versions Cite More -

Expensive Disk (SLED) has grown rapidly, the performance improvement of SLED has been modest. Redundant Arrays of Inexpensive Disks (RAID), based on the magnetic disk technology developed for personal computers, offers an attractive alternative to SLED, promising improvements of an order of magnitude in performance, reliability, power consumption, and scalability.

This paper introduces five levels of RAIDs, giving their relative cost/performance, and compares RAIDs to an IBM 3380 and a Fujitsu Super Eagle.

Q

RAID-I

- RAID-I (1989)
 - Consisted of a Sun 4/280 workstation with 128 MB of DRAM, four dual-string SCSI controllers, 28 5.25inch SCSI disks and specialized disk striping software

RAID II

- 1990-1993
- Early Network Attached Storage (NAS) System running a Log Structured File System (LFS)
- Impact:
 - \$25 Billion/year in 2002
 - Over \$150 Billion in RAID device sold since 1990-2002
 - 200+ RAID companies (at the peak)
 - Software RAID a standard component of modern OSs

And, in Conclusion, ...

- Great Idea: Redundancy to Get Dependability

 Spatial (extra hardware) and Temporal (retry if error)
- Reliability: MTTF & Annualized Failure Rate (AFR)
- Availability: % uptime (MTTF-MTTR/MTTF)
- Memory
 - Hamming distance 2: Parity for Single Error Detect
 - Hamming distance 3: Single Error Correction Code + encode bit position of error
- Treat disks like memory, except you know when a disk has failed—erasure makes parity an Error Correcting Code
- RAID-2, -3, -4, -5: Interleaved data and parity