
CS	61C:	
Great	Ideas	in	Computer	Architecture	

Course	Summary	and	Wrap

Instructors:
John	Wawrzynek	&	Vladimir	Stojanovic
http://inst.eecs.berkeley.edu/~cs61c/
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New-School	Machine	Structures
(It’s	a	bit	more	complicated!)

• Parallel	Requests
Assigned	 to	computer
e.g.,	Search	“Katz”

• Parallel	Threads
Assigned	 to	core
e.g.,	Lookup,	Ads

• Parallel	Instructions
>1	instruction	@	one	time
e.g.,	5	pipelined	 instructions

• Parallel	Data
>1	data	item	@	one	 time
e.g.,	Add	of	4	pairs	of	words

• Hardware	descriptions
All	gates	functioning	 in	

parallel	at	same	time
• Programming	Languages 3
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New	School	CS61C	(1/2)
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CS61c	is	NOT	about	C	Programming

• It’s	about	the	hardware-software	interface
– What	does	the	programmer	need	to	know	to	achieve	
the	highest	possible	performance

• C	Language	is	close	to	the	underlying	hardware,	
unlike	languages	like	Python!	
– Allows	us	to	talk	about	key	hardware	features	in	
higher	level	terms

– Allows	programmer	to	explicitly	harness	underlying	
hardware	parallelism	for	high	performance:	
“programming	for	performance”
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Great	Ideas	in	Computer	Architecture

1. Design	for	Moore’s	Law
2. Abstraction	to	Simplify	Design
3. Make	the	Common	Case	Fast
4. Dependability	via	Redundancy
5. Memory	Hierarchy
6. Performance	via	

Parallelism/Pipelining/Prediction
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Powers	of	Ten	inspired	61C	Overview

• Going	Top	Down	cover	3	Views
1. Architecture	(when	possible)
2. Physical	Implementation	of	that	architecture
3. Programming	system	for	that	architecture	and	

implementation	(when	possible)

See	https://www.youtube.com/watch?v=0fKBhvDjuy0
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1977	Short	“Film	Dealing	with	the	relative	size	of	things	in	
the	universe,		and	the	effect	of	adding	another	zero.	“	



Earth
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The	Dalles,	Oregon
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The	Dalles,	Oregon
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Google’s	Oregon	WSC
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Google’s	Oregon	WSC
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Google	Warehouse

• 90	meters	by	75	meters,	10	Megawatts
• Contains	40,000	servers,	190,000	disks
• Power	Utilization	Effectiveness:	1.23
– 85%	of	0.23	overhead	goes	to	cooling	losses
– 15%	of	0.23	overhead	goes	to	power	losses

• Contains	45,	40-foot	long	containers
– 8	feet	x 9.5	feet	x 40	feet

• 30	stacked	as	double	layer,	15	as	single	layer
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Containers	in	WSCs
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Google	Container
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Google	Container

• 2	long	rows,	each		with	29	
racks

• Cooling	below	raised	floor
• Hot	air	returned	behind	

racks
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Equipment	Inside	a	Container
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Server	(in	rack	
format):

7	foot	Rack:		servers	+	Ethernet	local	
area	network	switch	in	middle	(“rack	
switch”)

Array	(aka	cluster):		
server	racks	+	larger	local	
area	network	switch	
(“array	switch”)	10X	
faster	=>	cost	100X:	cost	
f(N2)



Google	Rack

• Google	rack	with	20	
servers	+	Network	
Switch	in	the	middle

• Array	switches	connect	
to	racks	via	multiple	1	
Gbit/s	links

• 2	datacenter	routers	
connect	to	array	
switches	over	10	Gbit/s
links
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// RDD: (Resilient Distributed Dataset) 
// Spark’s primary abstraction of a distributed 
collection of items
file = sc.textFile(“hdfs://…”)
// Two kinds of operations: 
// Actions: RDD à Value
// Transformations: RDD à RDD
// e.g. flatMap, Map, reduceByKey
file.flatMap(lambda line: line.split())

.map(lambda word: (word, 1))

.reduceByKey(lambda a, b: a + b) 

Programming	WSC:
Word	Count	in	Spark’s	Python	API
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Great	Ideas	in	Computer	Architecture

1. Design	for	Moore’s	Law
-- WSC,	Container,	Rack

2. Abstraction	to	Simplify	Design
3. Make	the	Common	Case	Fast
4. Dependability	via	Redundancy

--Multiple	WSCs,	Multiple	Racks,	Multiple	Switches
5. Memory	Hierarchy
6. Performance	via	

Parallelism/Pipelining/Prediction
-- Task	level	Parallelism,	Data	Level	Parallelism

22



Google	Server	Internals
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Google	Board	Details

• Supplies	only	12	volts
• Battery	per	board	vs.	
large	battery	room
– Improves	PUE:	99.99%	
efficient	local	battery	vs.	
94%	for	battery	room

• 2	SATA	Disk	Drives
– 1	Terabyte	capacity	each
– 3.5	inch	disk	drive
– 7200	RPM

• 2	AMD	Opteron
Microprocessors
– Dual	Core,	2.2	GHz

• 8	DIMMs
– 8	GB	DDR2	DRAM

• 1	Gbit/sec	Ethernet	
Network	Interface
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Programming	Multicore	
Microprocessor:	OpenMP

#include	<omp.h>
#include	<stdio.h>
static	long	num_steps =	100000;	
int	value[num_steps];	
int	reduce()	
{ int	i;	 int	sum	=	0;	
#pragma omp parallel	for	private(x)	reduction(+:sum)

for	(i=1;	i<=	num_steps;	i++){	
sum	=	sum	+	value[i];	

}	
}
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Great	Ideas	in	Computer	Architecture

1. Design	for	Moore’s	Law
-- More	transistors	=	Multicore	+	SIMD

2. Abstraction	to	Simplify	Design
3. Make	the	Common	Case	Fast
4. Dependability	via	Redundancy
5. Memory	Hierarchy

-- More	transistors	=	Cache	Memories
6. Performance	via	Parallelism/Pipelining/

Prediction
-- Thread-level	Parallelism
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AMD	Opteron Microprocessor
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AMD	OpteronMicroarchitecture

72	physical	
registers
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AMD	Opteron Pipeline	Flow
• For	integer	operations

− 12	stages	(Floating	Point	is 17	stages)
− Up	to	106	RISC-ops	in	progress
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AMD	Opteron Block	Diagram
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AMD	Opteron Microprocessor
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AMD	Opteron Core
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Programming	One	Core:	
C	with	Intrinsics	

void	mmult(int n,	float	*A,	float	*B,	float	*C)
{
for	(	int i =	0;	i <	n;	i+=4	)
for	(	int j	=	0;	j	<	n;	j++	)	
{
__m128	c0	=	_mm_load_ps(C+i+j*n);
for(	int k	=	0;	k	<	n;	k++	)
c0	=	_mm_add_ps(c0,	_mm_mul_ps(_mm_load_ps(A+i+k*n),		

_mm_load1_ps(B+k+j*n)));
_mm_store_ps(C+i+j*n,	c0);
}

}



Inner	loop	from	gcc –O	-S
Assembly	snippet	from	innermost	loop:

movaps (%rax),	%xmm9
mulps %xmm0,	%xmm9
addps %xmm9,	%xmm8
movaps 16(%rax),	%xmm9
mulps %xmm0,	%xmm9
addps %xmm9,	%xmm7
movaps 32(%rax),	%xmm9
mulps %xmm0,	%xmm9
addps %xmm9,	%xmm6
movaps 48(%rax),	%xmm9
mulps %xmm0,	%xmm9
addps %xmm9,	%xmm5



Great	Ideas	in	Computer	Architecture

1. Design	for	Moore’s	Law
2. Abstraction	to	Simplify	Design

-- Instruction	Set	Architecture,	Micro-operations
3. Make	the	Common	Case	Fast
4. Dependability	via	Redundancy
5. Memory	Hierarchy
6. Performance	via	

Parallelism/Pipelining/Prediction
-- Instruction-level	Parallelism	(superscalar,	pipelining)
-- Data-level	Parallelism
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SIMD	Adder

• Four	32-bit	adders	that	
operate	in	parallel
– Data	Level	Parallelism
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One	32-bit	Adder
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1	bit	of	32-bit	Adder
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Complementary	MOS	Transistors	
(NMOS	and	PMOS)	of	NAND	Gate
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Z
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Physical	Layout	of	NAND	Gate
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Scanning	Electron	Microscope
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Block	Diagram	of	Static	RAM
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1	Bit	SRAM	in	6	Transistors
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Physical	Layout	of	SRAM	Bit
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SRAM	Cross	Section
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DIMM	Module

• DDR	=	Double	Data	Rate
– Transfers	bits	on	Falling	AND	Rising	Clock	Edge

• Has	Single	Error	Correcting,	Double	Error	
Detecting	Redundancy	(SEC/DED)
– 72	bits	to	store	64	bits	of	data
– Uses	“Chip	kill”	organization	so	that	if	single	
DRAM	chip	fails	can	still	detect	failure

• Average	server	has	22,000	correctable	errors	
and	1	uncorrectable	error	per	year	

46



DRAM	Bits
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DRAM	Cell	in	Transistors
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Physical	Layout	of	DRAM	Bit
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Cross	Section	of	DRAM	Bits
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AMD	Dependability

•	L1	cache	data	is	SEC/DED	protected
•	L2	cache	and	tags	are	SEC/DED	protected
•	DRAM	is	SEC/DED	protected	with	chipkill
•	On-chip	and	off-chip	ECC	protected	arrays	
include	autonomous,	background	hardware	
scrubbers

•	Remaining	arrays	are	parity	protected	
– Instruction	cache,	tags	and	TLBs	
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• The	blocked	version	of	the	i-j-k algorithm	is	written	
simply	as	(A,B,C	are	submatricies of	a,	b,	c)

for (i=0;i<N/r;i++)
for (j=0;j<N/r;j++)

for (k=0;k<N/r;k++)
C[i][j] += A[i][k]*B[k][j]

– r =	block	(sub-matrix)	size	(Assume	r divides	N)
– X[i][j] =		a	sub-matrix	of	X,	defined	by	block	row	i and	
block	column	j

Programming	Memory	Hierarchy:	
Cache	Blocked	Algorithm



Great	Ideas	in	Computer	Architecture

1. Design	for	Moore’s	Law
-- Higher	capacities	caches	and	DRAM

2. Abstraction	to	Simplify	Design
3. Make	the	Common	Case	Fast
4. Dependability	via	Redundancy

-- Parity,	SEC/DEC
5. Memory	Hierarchy

-- Caches,	TLBs
6. Performance	via	Parallelism/Pipelining/Prediction

-- Data-level	Parallelism
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Course	Summary

• As	the	field	changes,	cs61c	had	to	change	too!
• It	is	still	about	the	software-hardware	
interface
– Programming	for	performance!
– Parallelism:	 Task-,	Thread-,	Instruction-,	and	Data-
MapReduce,	OpenMP,	C,	SSE	instrinsics

– Understanding	the	memory	hierarchy	and	its	
impact	on	application	performance

• Interviewers	ask	what	you	did	this	semester!
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Administrivia
• Get	labs	checked	off	this	week	– save	OH	for	
exam	questions

• Final	Exam
– FRIDAY,	DEC	18,	2015,	7-10P
– Location:	Wheeler	Aud (with	overflow	room)
– THREE	cheat	sheets	(MT1,	MT2,	post-MT2)

• Review	Sessions:
– Thursday	Dec	10	2-5pm,	room	TBA
– HKN:	TBA
– Regular	office	hours	next	week	– but	check	piazza	for	
changes
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Competition	Prize	Presentation
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What	Next?

• EECS151	(spring/fall)	if	you	liked	digital	systems	
design

• CS152	(fall)	if	you	liked	computer	architecture
• CS162	(spring/fall)	operating	systems	and	
system	programming

• CS168	computer	networks
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The	Future	for	Future	Cal	Alumni
• What’s	The	Future?
• Many	New	Opportunities:	Parallelism,	Cloud,	Statistics	
+	CS,	Bio	+	CS,	Society	(Health	Care,	3rd	world)	+	CS

• Cal	heritage	as	future	alumni
– Hard	Working	/	Can	do	attitude
– Never	Give	Up	(“Don’t	fall	with	the	ball!”)

• “The	best	way	to	predict	the	future	is	to	invent	it”	–
Alan	Kay	(inventor	of	personal	computing	vision)

• Future	is	up	to	you!
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Thanks	to	all	Staff!
• TAs:
• William	Huang	(Head	TA)
• Fred	Hong	(Head	TA)
• Derek	Ahmed
• Rebecca	Herman
• Jason	Zhang
• Chris	Hsu
• Shreyas Chand
• David	Adams
• Xinghua Dou
• Eric	Lin
• Manu	Goyal
• Stephan	Liu
• Austin	Tai
• Alex	Khodaverdian

• Tutors:
• Marta	Lokhava
• Brenton Chu
• Shu Li
• Angel	Lim
• Michelle	Tsai
• Dasheng Chen

• Readers:
• Daylen Yang
• Molly	Zhai

• +	All	the	Lab	assistants

59


