
CS	61C:	
Great	Ideas	in	Computer	Architecture	

Course	Summary	and	Wrap

Instructors:
John	Wawrzynek	&	Vladimir	Stojanovic
http://inst.eecs.berkeley.edu/~cs61c/

1



Old	Machine	Structures

2

CS61c

I/O	systemProcessor

Compiler
Operating
System
(Mac	OSX)

Application	(ex:	browser)

Digital	Design
Circuit	Design

Instruction	Set
Architecture

Datapath	&	Control	

transistors

MemoryHardware

Software Assembler



New-School	Machine	Structures
(It’s	a	bit	more	complicated!)

• Parallel	Requests
Assigned	 to	computer
e.g.,	Search	“Katz”

• Parallel	Threads
Assigned	 to	core
e.g.,	Lookup,	Ads

• Parallel	Instructions
>1	instruction	@	one	time
e.g.,	5	pipelined	 instructions

• Parallel	Data
>1	data	item	@	one	 time
e.g.,	Add	of	4	pairs	of	words

• Hardware	descriptions
All	gates	functioning	 in	

parallel	at	same	time
• Programming	Languages 3

Smart
Phone

Warehouse	
Scale	

Computer

Software								Hardware

Leverage
Parallelism	&
Achieve	High
Performance

Logic	Gates

Core Core…

Memory															

Input/Output

Computer

Cache	Memory

Core

Instruction	Unit(s) Functional
Unit(s)

A3+B3A2+B2A1+B1A0+B0

Project	2

Project	1

Project	3

Project	4



New	School	CS61C	(1/2)

4

Personal	
Mobile	
Devices



5



6



CS61c	is	NOT	about	C	Programming

• It’s	about	the	hardware-software	interface
– What	does	the	programmer	need	to	know	to	achieve	
the	highest	possible	performance

• C	Language	is	close	to	the	underlying	hardware,	
unlike	languages	like	Python!	
– Allows	us	to	talk	about	key	hardware	features	in	
higher	level	terms

– Allows	programmer	to	explicitly	harness	underlying	
hardware	parallelism	for	high	performance:	
“programming	for	performance”

7



Great	Ideas	in	Computer	Architecture

1. Design	for	Moore’s	Law
2. Abstraction	to	Simplify	Design
3. Make	the	Common	Case	Fast
4. Dependability	via	Redundancy
5. Memory	Hierarchy
6. Performance	via	

Parallelism/Pipelining/Prediction

8



Powers	of	Ten	inspired	61C	Overview

• Going	Top	Down	cover	3	Views
1. Architecture	(when	possible)
2. Physical	Implementation	of	that	architecture
3. Programming	system	for	that	architecture	and	

implementation	(when	possible)

See	https://www.youtube.com/watch?v=0fKBhvDjuy0

9

1977	Short	“Film	Dealing	with	the	relative	size	of	things	in	
the	universe,		and	the	effect	of	adding	another	zero.	“	



Earth

10

107 meters



The	Dalles,	Oregon

11

104 meters



The	Dalles,	Oregon

12

104 meters



Google’s	Oregon	WSC

13

103 meters



Google’s	Oregon	WSC

14

104 meters

103 meters102 meters10
	k
ilo

m
et
er
s



Google	Warehouse

• 90	meters	by	75	meters,	10	Megawatts
• Contains	40,000	servers,	190,000	disks
• Power	Utilization	Effectiveness:	1.23
– 85%	of	0.23	overhead	goes	to	cooling	losses
– 15%	of	0.23	overhead	goes	to	power	losses

• Contains	45,	40-foot	long	containers
– 8	feet	x 9.5	feet	x 40	feet

• 30	stacked	as	double	layer,	15	as	single	layer

15



Containers	in	WSCs

16

102 meters
10
0	
m
et
er
s



Google	Container

17

101 meters



Google	Container

• 2	long	rows,	each		with	29	
racks

• Cooling	below	raised	floor
• Hot	air	returned	behind	

racks

18

100 meters
10
	m

et
er
s



Equipment	Inside	a	Container

19

Server	(in	rack	
format):

7	foot	Rack:		servers	+	Ethernet	local	
area	network	switch	in	middle	(“rack	
switch”)

Array	(aka	cluster):		
server	racks	+	larger	local	
area	network	switch	
(“array	switch”)	10X	
faster	=>	cost	100X:	cost	
f(N2)



Google	Rack

• Google	rack	with	20	
servers	+	Network	
Switch	in	the	middle

• Array	switches	connect	
to	racks	via	multiple	1	
Gbit/s	links

• 2	datacenter	routers	
connect	to	array	
switches	over	10	Gbit/s
links

20

100 meters
1	
m
et
er



// RDD: (Resilient Distributed Dataset) 
// Spark’s primary abstraction of a distributed 
collection of items
file = sc.textFile(“hdfs://…”)
// Two kinds of operations: 
// Actions: RDD à Value
// Transformations: RDD à RDD
// e.g. flatMap, Map, reduceByKey
file.flatMap(lambda line: line.split())

.map(lambda word: (word, 1))

.reduceByKey(lambda a, b: a + b) 

Programming	WSC:
Word	Count	in	Spark’s	Python	API

21



Great	Ideas	in	Computer	Architecture

1. Design	for	Moore’s	Law
-- WSC,	Container,	Rack

2. Abstraction	to	Simplify	Design
3. Make	the	Common	Case	Fast
4. Dependability	via	Redundancy

--Multiple	WSCs,	Multiple	Racks,	Multiple	Switches
5. Memory	Hierarchy
6. Performance	via	

Parallelism/Pipelining/Prediction
-- Task	level	Parallelism,	Data	Level	Parallelism

22



Google	Server	Internals

23

Google	Server

10-1 meters
10
	c
en

tim
et
er
s



Google	Board	Details

• Supplies	only	12	volts
• Battery	per	board	vs.	
large	battery	room
– Improves	PUE:	99.99%	
efficient	local	battery	vs.	
94%	for	battery	room

• 2	SATA	Disk	Drives
– 1	Terabyte	capacity	each
– 3.5	inch	disk	drive
– 7200	RPM

• 2	AMD	Opteron
Microprocessors
– Dual	Core,	2.2	GHz

• 8	DIMMs
– 8	GB	DDR2	DRAM

• 1	Gbit/sec	Ethernet	
Network	Interface

24



Programming	Multicore	
Microprocessor:	OpenMP

#include	<omp.h>
#include	<stdio.h>
static	long	num_steps =	100000;	
int	value[num_steps];	
int	reduce()	
{ int	i;	 int	sum	=	0;	
#pragma omp parallel	for	private(x)	reduction(+:sum)

for	(i=1;	i<=	num_steps;	i++){	
sum	=	sum	+	value[i];	

}	
}

25



Great	Ideas	in	Computer	Architecture

1. Design	for	Moore’s	Law
-- More	transistors	=	Multicore	+	SIMD

2. Abstraction	to	Simplify	Design
3. Make	the	Common	Case	Fast
4. Dependability	via	Redundancy
5. Memory	Hierarchy

-- More	transistors	=	Cache	Memories
6. Performance	via	Parallelism/Pipelining/

Prediction
-- Thread-level	Parallelism

26



AMD	Opteron Microprocessor

27

10-2 meters
ce
nt
im

et
er
s



AMD	OpteronMicroarchitecture

72	physical	
registers

28



AMD	Opteron Pipeline	Flow
• For	integer	operations

− 12	stages	(Floating	Point	is 17	stages)
− Up	to	106	RISC-ops	in	progress

29



AMD	Opteron Block	Diagram

30

AGUAGU

Int	Decode	&	Rename

FADD FMISCFMUL
44-entry
Load/Store
Queue

36-entry	FP	scheduler

FP	Decode	&	Rename

ALU

AGU

ALU

MULT

ALU

Res Res Res

L1
Icache
64B

L1
Dcache
64KB

Fetch Branch
Prediction

Instruction	Control	Unit	(72	entries)

Fastpath Microcode	Engine
Scan/Align/Decode

µops



AMD	Opteron Microprocessor

31

10-2 meters
ce
nt
im

et
er
s



AMD	Opteron Core

32

10-3 meters
m
ill
im

et
er
s



Programming	One	Core:	
C	with	Intrinsics	

void	mmult(int n,	float	*A,	float	*B,	float	*C)
{
for	(	int i =	0;	i <	n;	i+=4	)
for	(	int j	=	0;	j	<	n;	j++	)	
{
__m128	c0	=	_mm_load_ps(C+i+j*n);
for(	int k	=	0;	k	<	n;	k++	)
c0	=	_mm_add_ps(c0,	_mm_mul_ps(_mm_load_ps(A+i+k*n),		

_mm_load1_ps(B+k+j*n)));
_mm_store_ps(C+i+j*n,	c0);
}

}



Inner	loop	from	gcc –O	-S
Assembly	snippet	from	innermost	loop:

movaps (%rax),	%xmm9
mulps %xmm0,	%xmm9
addps %xmm9,	%xmm8
movaps 16(%rax),	%xmm9
mulps %xmm0,	%xmm9
addps %xmm9,	%xmm7
movaps 32(%rax),	%xmm9
mulps %xmm0,	%xmm9
addps %xmm9,	%xmm6
movaps 48(%rax),	%xmm9
mulps %xmm0,	%xmm9
addps %xmm9,	%xmm5



Great	Ideas	in	Computer	Architecture

1. Design	for	Moore’s	Law
2. Abstraction	to	Simplify	Design

-- Instruction	Set	Architecture,	Micro-operations
3. Make	the	Common	Case	Fast
4. Dependability	via	Redundancy
5. Memory	Hierarchy
6. Performance	via	

Parallelism/Pipelining/Prediction
-- Instruction-level	Parallelism	(superscalar,	pipelining)
-- Data-level	Parallelism

35



SIMD	Adder

• Four	32-bit	adders	that	
operate	in	parallel
– Data	Level	Parallelism

36



One	32-bit	Adder

37



1	bit	of	32-bit	Adder

38



Complementary	MOS	Transistors	
(NMOS	and	PMOS)	of	NAND	Gate

3v

X Y

0v

Z

39

x y z

0 volts

3 volts

0 volts

3 volts

0 volts

0 volts
3 volts

3 volts

3 volts

3 volts

3 volts

0 volts

NAND	gate



Physical	Layout	of	NAND	Gate

40

10-7 meters
10
0	
na
no

m
et
er
s



Scanning	Electron	Microscope

41

10-7 meters

Cross	Section
Top	View

10
0	
na
no

m
et
er
s



Block	Diagram	of	Static	RAM

42

10-6 meters



1	Bit	SRAM	in	6	Transistors

43



Physical	Layout	of	SRAM	Bit

44

10-7 meters
10
0	
na
no

m
et
er
s



SRAM	Cross	Section

45

10-7 meters
10
0	
na
no

m
et
er
s



DIMM	Module

• DDR	=	Double	Data	Rate
– Transfers	bits	on	Falling	AND	Rising	Clock	Edge

• Has	Single	Error	Correcting,	Double	Error	
Detecting	Redundancy	(SEC/DED)
– 72	bits	to	store	64	bits	of	data
– Uses	“Chip	kill”	organization	so	that	if	single	
DRAM	chip	fails	can	still	detect	failure

• Average	server	has	22,000	correctable	errors	
and	1	uncorrectable	error	per	year	

46



DRAM	Bits

47

10-6 meters
1	
m
icr
on



DRAM	Cell	in	Transistors

48



Physical	Layout	of	DRAM	Bit

49



Cross	Section	of	DRAM	Bits

50

10-7 meters

10
0	
na
no

m
et
er
s



AMD	Dependability

•	L1	cache	data	is	SEC/DED	protected
•	L2	cache	and	tags	are	SEC/DED	protected
•	DRAM	is	SEC/DED	protected	with	chipkill
•	On-chip	and	off-chip	ECC	protected	arrays	
include	autonomous,	background	hardware	
scrubbers

•	Remaining	arrays	are	parity	protected	
– Instruction	cache,	tags	and	TLBs	

51



• The	blocked	version	of	the	i-j-k algorithm	is	written	
simply	as	(A,B,C	are	submatricies of	a,	b,	c)

for (i=0;i<N/r;i++)
for (j=0;j<N/r;j++)

for (k=0;k<N/r;k++)
C[i][j] += A[i][k]*B[k][j]

– r =	block	(sub-matrix)	size	(Assume	r divides	N)
– X[i][j] =		a	sub-matrix	of	X,	defined	by	block	row	i and	
block	column	j

Programming	Memory	Hierarchy:	
Cache	Blocked	Algorithm



Great	Ideas	in	Computer	Architecture

1. Design	for	Moore’s	Law
-- Higher	capacities	caches	and	DRAM

2. Abstraction	to	Simplify	Design
3. Make	the	Common	Case	Fast
4. Dependability	via	Redundancy

-- Parity,	SEC/DEC
5. Memory	Hierarchy

-- Caches,	TLBs
6. Performance	via	Parallelism/Pipelining/Prediction

-- Data-level	Parallelism

53



Course	Summary

• As	the	field	changes,	cs61c	had	to	change	too!
• It	is	still	about	the	software-hardware	
interface
– Programming	for	performance!
– Parallelism:	 Task-,	Thread-,	Instruction-,	and	Data-
MapReduce,	OpenMP,	C,	SSE	instrinsics

– Understanding	the	memory	hierarchy	and	its	
impact	on	application	performance

• Interviewers	ask	what	you	did	this	semester!
54



Administrivia
• Get	labs	checked	off	this	week	– save	OH	for	
exam	questions

• Final	Exam
– FRIDAY,	DEC	18,	2015,	7-10P
– Location:	Wheeler	Aud (with	overflow	room)
– THREE	cheat	sheets	(MT1,	MT2,	post-MT2)

• Review	Sessions:
– Thursday	Dec	10	2-5pm,	room	TBA
– HKN:	TBA
– Regular	office	hours	next	week	– but	check	piazza	for	
changes

55



Competition	Prize	Presentation

56



What	Next?

• EECS151	(spring/fall)	if	you	liked	digital	systems	
design

• CS152	(fall)	if	you	liked	computer	architecture
• CS162	(spring/fall)	operating	systems	and	
system	programming

• CS168	computer	networks

57



The	Future	for	Future	Cal	Alumni
• What’s	The	Future?
• Many	New	Opportunities:	Parallelism,	Cloud,	Statistics	
+	CS,	Bio	+	CS,	Society	(Health	Care,	3rd	world)	+	CS

• Cal	heritage	as	future	alumni
– Hard	Working	/	Can	do	attitude
– Never	Give	Up	(“Don’t	fall	with	the	ball!”)

• “The	best	way	to	predict	the	future	is	to	invent	it”	–
Alan	Kay	(inventor	of	personal	computing	vision)

• Future	is	up	to	you!

58



Thanks	to	all	Staff!
• TAs:
• William	Huang	(Head	TA)
• Fred	Hong	(Head	TA)
• Derek	Ahmed
• Rebecca	Herman
• Jason	Zhang
• Chris	Hsu
• Shreyas Chand
• David	Adams
• Xinghua Dou
• Eric	Lin
• Manu	Goyal
• Stephan	Liu
• Austin	Tai
• Alex	Khodaverdian

• Tutors:
• Marta	Lokhava
• Brenton Chu
• Shu Li
• Angel	Lim
• Michelle	Tsai
• Dasheng Chen

• Readers:
• Daylen Yang
• Molly	Zhai

• +	All	the	Lab	assistants

59


