
CS	61C
Great	Ideas	in	Computer	Architecture	

(a.k.a.	Machine	Structures)
Lecture	1:	Course	
Introduction
Instructors:

Bernhard	Boser
Randy	H.	Katz

http://inst.eecs.berkeley.edu/~cs61c/

Agenda

• Thinking	about	Machine	Structures
• Great	Ideas	in	Computer	Architecture
• What	You	Need	to	Know	About	This	Class
• Everything	is	a	Number

8/30/16 Fall	2016	- Lecture	#1 2

Agenda

• Thinking	about	Machine	Structures
• Great	Ideas	in	Computer	Architecture
• What	You	Need	to	Know	About	This	Class
• Everything	is	a	Number

8/30/16 Fall	2016	- Lecture	#1 3

Most	Popular	Programming	Languages

• What	do	you	think	is	the	most	
“popular”	programming	
language	in	use	today?

8/30/16 4Fall	2016	- Lecture	#1

Why	You	Need	to	Learn	C!

8/30/16 5Fall	2016	- Lecture	#1

CS61C	is	NOT	really	about	C	
Programming

• It	is	about	the	hardware-software	 interface
– What	does	the	programmer	need	to	know	to	
achieve	the	highest	possible	performance

• C	is	close	to	the	underlying	hardware,	unlike	
languages	like	Python and	Java!	
– Allows	us	to	talk	about	key	hardware	features	in	
higher	level	terms

– Allows	programmer	to	explicitly	harness	
underlying	hardware	parallelism	for	high	
performance

8/30/16 Fall	2016	- Lecture	#1 6

Old	School	CS61C

8/30/16 7Fall	2016	- Lecture	#1

New	School	CS61C	(1/2)

8

Personal	
Mobile	
Devices

8/30/16 Fall	2016	- Lecture	#1 8

New	School	CS61C	(2/2)

8/30/16 9Fall	2016	- Lecture	#1
9

New-School	Machine	Structures

• Parallel	Requests
Assigned	 to	computer
e.g.,	Search	“cats”

• Parallel	Threads
Assigned	 to	core
e.g.,	Lookup,	Ads

• Parallel	Instructions
>1	instruction	@	one	time
e.g.,	5	pipelined	 instructions

• Parallel	Data
>1	data	item	@	one	 time
e.g.,	Add	of	4	pairs	of	words

• Hardware	descriptions
All	gates	functioning	 in	

parallel	at	same	time

Smart
Phone

Warehouse
-Scale	

Computer

Software								Hardware

Harness
Parallelism	&
Achieve	High
Performance

Logic	Gates

Core Core…

Memory															(Cache)

Input/Output

Computer

Main	Memory

Core

Instruction	Unit(s) Functional
Unit(s)

A3+B3A2+B2A1+B1A0+B0

• 8/30/16 Fall	2016	- Lecture	#1 10

New-School	Machine	Structures

• Parallel	Requests
Assigned	 to	computer
e.g.,	Search	“cats”

• Parallel	Threads
Assigned	 to	core
e.g.,	Lookup,	Ads

• Parallel	Instructions
>1	instruction	@	one	time
e.g.,	5	pipelined	 instructions

• Parallel	Data
>1	data	item	@	one	 time
e.g.,	Add	of	4	pairs	of	words

• Hardware	descriptions
All	gates	functioning	 in	

parallel	at	same	time
11

Smart
Phone

Warehouse
-Scale	

Computer

Software								Hardware

Harness
Parallelism	&
Achieve	High
Performance

Logic	Gates

Core Core…

Memory															(Cache)

Input/Output

Computer

Main	Memory

Core

Instruction	Unit(s) Functional
Unit(s)

A3+B3A2+B2A1+B1A0+B0

Project	1

Project	4

Project	3

Project	2
• 8/30/16 Fall	2016	- Lecture	#1 11

Agenda

• Thinking	about	Machine	Structures
• Great	Ideas	in	Computer	Architecture
• What	You	Need	to	Know	About	This	Class
• Everything	is	a	Number

8/30/16 Fall	2016	- Lecture	#1 12

Five	Great	Ideas
in	Computer	Architecture

1. Abstraction
(Layers	of	Representation/Interpretation)

2. Moore’s	Law	(Designing	through	trends)
3. Principle	of	Locality	(Memory	Hierarchy)
4. Parallelism
5. Dependability	via	Redundancy

8/30/16 Fall	2016	- Lecture	#1 13
13

Great	Idea	#1:	Abstraction
(Levels	of	Representation/Interpretation)

lw $t0,	0($2)
lw $t1,	4($2)
sw $t1,	0($2)
sw $t0,	4($2)

High	Level	Language
Program	(e.g.,	C)

Assembly		Language	
Program	(e.g.,	MIPS)

Machine		Language	
Program	(MIPS)

Hardware	Architecture	Description
(e.g.,	block	diagrams)

Compiler

Assembler

Machine	
Interpretation

temp	=	v[k];
v[k]	=	v[k+1];
v[k+1]	=	temp;

0000 1001 1100 0110 1010 1111 0101 1000
1010 1111 0101 1000 0000 1001 1100 0110
1100 0110 1010 1111 0101 1000 0000 1001
0101 1000 0000 1001 1100 0110 1010 1111

Logic	Circuit	Description
(Circuit	Schematic	Diagrams)

Architecture	
Implementation

Anything	can	be	represented
as	a	number,	

i.e.,	data	or	instructions

14
8/30/16 Fall	2016	- Lecture	#1 14

Gordon	Moore
Intel	Cofounder
B.S.	Cal	1950!

8/30/16 15Fall	2016	- Lecture	#1

Predicts:	
2X	Transistors	/	chip	

every	2	years

#2:	Moore’s	Law

End	of	Moore’s	Law?

8/30/16 Fall	2016	- Lecture	#1 16

Cost	per	transistor
is	rising	as	transistor
size	continues	to	

shrink

Jim	Gray’s	Storage	Latency	Analogy:		
How	Far	Away	is	the	Data?

8/30/16 17Fall	2016	- Lecture	#1
Registers
On Chip Cache
On Board Cache

Main Memory

Disk

1
2

10

100

Tape /Optical
Robot

109

106

Sacramento

This Campus
This Room

My Head

10 min

1.5 hr

2 Years

1 min

Pluto

2,000 Years

Andromeda

(ns)

Jim	Gray
Turing	Award
B.S.	Cal	1966
Ph.D.	Cal	1969!

Fall	2016-- Lecture	#1

Great	Idea	#3:	Principle	of	Locality/
Memory	Hierarchy

8/30/16 18
8/30/16 Fall	2016	- Lecture	#1 18

Great	Idea	#4:	Parallelism

8/30/16 Fall	2016	- Lecture	#1 19

8/30/16

Caveat:	Amdahl’s	Law

Gene	Amdahl
Computer	Pioneer

8/30/16 Fall	2016	- Lecture	#1 20

Coping	with	Failures

• 4	disks/server,	50,000	servers
• Failure	rate	of	disks:	2%	to	10%	/	year

– Assume	4%	annual	failure	rate
• On	average,	how	often	does	a	disk	fail?

a) 1	/	month
b) 1	/	week
c) 1	/	day
d) 1	/	hour

8/30/16 Fall	2016	- Lecture	#1 21

Coping	with	Failures

• 4	disks/server,	50,000	servers
• Failure	rate	of	disks:	2%	to	10%	/	year

– Assume	4%	annual	failure	rate
• On	average,	how	often	does	a	disk	fail?

a) 1	/	month
b) 1	/	week
c) 1	/	day
d) 1	/	hour

50,000	x 4	=	200,000	disks
200,000	x 4%	=	8000	disks	fail

365	days	x 24	hours	=	8760	hours

8/30/16 Fall	2016	- Lecture	#1 22

Great	Idea	#5:	
Dependability	via	Redundancy

• Redundancy	so	that	a	failing	piece	doesn’t	
make	the	whole	system	fail

1+1=2 1+1=2 1+1=1

1+1=2
2	of	3	agree

FAIL!

Increasing	transistor	density	 reduces	the	cost	of	redundancy
8/30/16 Fall	2016	- Lecture	#1 23

Great	Idea	#5:	
Dependability	via	Redundancy

• Applies	to	everything	from	datacenters	to	storage	to	
memory	to	instructors
– Redundant	datacenters so	that	can	lose	1	datacenter	but	
Internet	service	stays	online

– Redundant	disks so	that	can	lose	1	disk	but	not	lose	data	
(Redundant	Arrays	of	Independent	Disks/RAID)

– Redundant	memory	bits of	so	that	can	lose	1	bit	but	no	data	
(Error	Correcting	Code/ECC	Memory)

8/30/16 Fall	2016	- Lecture	#1 24

Your	Turn

• You	have	8	disks,	1TB	each.
– What	is	the	minimum	number	of	extra	disks	to	
insure	that	no	information	is	lost	if	a	single	disk	
fails?
A)	8
B)		log28	=	3
C)	1
D)	2
E)	0

8/30/16 25Fall	2016	- Lecture	#1

1
0
0
1
1
0
1
1
0

1
0
0
1

0

Rule:	Each	bit	row	has	an	odd
number	of	ones	 (odd	parity)

The	missing	bit
must	be	one!

1
1
0

Break!

8/30/16 26Fall	2016	- Lecture	#1

Understanding	Computer	Architecture

8/30/16 27Fall	2016	- Lecture	#1
de.pinterest.com

Why	is	Architecture	Exciting	Today?

8/30/16 28Fall	2016	- Lecture	#1

CPU	Speed	Flat

Motivation:	Example
Code	(C) Execution	time

$ gcc array.c
$./a.out
1.0X time for inc 1
1.0X time for inc 3
2.3X time for inc 15485867

Consecutive	is	>2x	faster!

Relevance:
• E.g.	Vector	vs	HashMap
• Independent	of	programming	

language

8/30/16 Fall	2016	- Lecture	#1 29
Why?

Complete	Code,	Page	1

8/30/16 Fall	2016	- Lecture	#1 30

Complete	Code,	Page	2

8/30/16 Fall	2016	- Lecture	#1 31

How	to	get	an	A	in	61C

8/30/16 32Fall	2016	- Lecture	#1

Agenda

• Thinking	about	Machine	Structures
• Great	Ideas	in	Computer	Architecture
• What	You	Need	to	Know	About	This	Class
• Everything	is	a	Number

8/30/16 Fall	2016	- Lecture	#1 33

Course	Information
• Course	Web:	http://inst.eecs.Berkeley.edu/~cs61c/
• Instructors:	Bernhard	Boser	and	Randy	H.	Katz
• Teaching	Staff:	

– Co-Head	TAs:	Derek	Ahmed	and	Stephan	Liu
– Lead	TAs:	Manu	Goyal,	Rebecca	Herman,	Alex	Khodaverdian,		

Jason	Zhang
– 20	TAs	+	10	Tutors	(see	webpage)

• Textbooks:	Average	15	pages	of	reading/week	(can	rent!)
– Patterson	&	Hennessey,	Computer	Organization	and	Design,	5/e
– Kernighan	&	Ritchie,	The	C	Programming	Language,	2nd Edition
– Barroso	&	Holzle,	The	Datacenter	as	a	Computer,	2nd Edition

• Piazza:	
– Every	announcement,	discussion,	clarification	happens	there!

8/30/16 34Fall	2016	- Lecture	#1

CS61c	House	Rules	in	a	Nutshell
• Please	don’t	disturb	the	instructors	setting	up	or	tearing	

down	just	before/after	lecture
• Webcast?	Yes!
• Labs	and	discussion	after	NEXT	Tuesday’s	lecture
• Wait	listed?	Enroll	in	any	available	section/lab,	swap	later
• Excused	Absences:	Let	us	know	by	second	week
• Midterms	are	in	class	9/27	and	11/1;	

Final	is	12/16	at	7-10	PM
• Labs	are	partnered	and	Projects	are	solo	(5)

– Discussion	is	Good,	but	Co-Developing/Sharing/Borrowing	
Project	Code	or	Circuits	is	Bad

– No	Public	Repos	Please:	Don’t	Look,	Don’t	Publish
• Join	Piazza	for	more	details	…	see	

http://inst.eecs.berkeley.edu/~cs61c/fa16/
8/30/16 35Fall	2016	- Lecture	#1

Course	Grading
• EPA:	Effort,	Participation	and	Altruism	(5%)
• Homework	(5%)
• Partnered	Labs	(10%)
• Solo	Projects	(30%)

1. Build	your	own	Git repo	(C)
2. Non-Parallel	Application	(MIPS	&	C)
3. Computer	Processor	Design	(Logisim)
4. Parallelize	for	Performance,	SIMD,	MIMD
5. Massive	Data	Parallelism	(Spark	on	Amazon	EC2)

• Two	midterms	(12.5%	each):	9/17	and	11/1
• Final	(25%):	12/16	@	7-10pm	(Last	Exam	Slot!)
• Performance	Competition	for	honor	(and	EPA)

8/30/16 Fall	2016	- Lecture	#1 36

EPA!
• Effort

– Attending	prof	and	TA	office	hours,	completing	all	
assignments,	turning	in	HW,	doing	reading	quizzes

• Participation
– Attending	lecture	and	voting	using	the	clickers
– Asking	great	questions	in	discussion	and	lecture	and	
making	it	more	interactive

• Altruism
– Helping	others	in	lab	or	on	Piazza

• EPA!	points	have	the	potential	to	bump	students	up	
to	the	next	grade	level!	(but	actual	EPA!	scores	are	
internal)

8/30/16 Fall	2016	- Lecture	#1 37

Peer	Instruction

• Increase	real-time	learning	in	lecture,	
test	understanding	of	concepts	vs.	details

• As	complete	a	“segment” ask	multiple-choice	
question
– 1-2	minutes	to	decide	yourself
– 2	minutes	in	pairs/triples	to	reach	consensus.	
– Teach	others!
– 2	minute	discussion	of	answers,	questions,	
clarifications

• You	can	get	transmitters	from	the	ASUC	bookstore
– We’ll	start	this	next	week
– No	web-based	clickers,	sorry!

8/30/16 38Fall	2016	- Lecture	#1
38

Late	Policy	…	Slip	Days!
• Assignments	due	at	11:59:59	PM
• You	have	3 slip	day	tokens	(NOT	hour	or	min)
• Every	day	your	project	or	homework	is	late	
(even	by	a	minute)	we	deduct	a	token

• After	you’ve	used	up	all	tokens,	it’s	33%	
deducted	per	day.
– No	credit	if	more	than	3	days	late
– Save	your	tokens	for	projects,	worth	more!!

• No	need	for	sob	stories,	just	use	a	slip	day!
8/30/16 39Fall	2016	- Lecture	#1

39

Laptops	and	Phones	in	Lecture?

• What	do	you	think	the	policy	should	be?

8/30/16 40Fall	2016	- Lecture	#1

Policy	on	Assignments	and	
Independent	Work

• With	the	exception	of	laboratories	that	explicitly	permit	you	to	work	with	
partners,	ALL	OTHER	WORK	IS	TO	BE	YOUR	OWN.

• You	are	encouraged	to	discuss	your	assignments	with	other	students,	and	
extra	credit	will	be	assigned	to	students	who	help	others	via	EPA,	but	what	
you	hand	in	MUST	BE	YOUR	OWN	WORK.

• It	is	NOT	acceptable	to	copy	solutions	from	other	students.
• It	is	NOT	acceptable	to	copy	(or	start	your)	solutions	from	the	Web.	
• It	is	NOT	acceptable	to	use	PUBLIC	github archives	(whether	looking	at	OR	

giving	your	answers	away).	PLEASE	PUT	A	PASSWORD	ON	IT!
• We	have	tools	and	methods,	developed	over	many	years,	for	detecting	this.	

You	WILL	be	caught,	and	the	penalties	WILL	be	severe.	
• At	the	minimum	F	in	the	course,	and	a	letter	to	your	university	record	

documenting	the	incidence	of	cheating.
• (We’ve	caught	people	in	recent	semesters!)
• Both	Giver	and	Receiver	are	equally	culpable	and	suffer	equal	penalties

8/30/16 41Fall	2016	- Lecture	#1

Collaboration	in	Black and	
• Good	Collaboration

– High	level	discussion	and	brainstorming,	stopping	short	of	code	
snippets

– Sitting	together	and	co-writing	code,	inspecting	each	other’s	code,	
taking	(or	giving)	code	whether	in	exchange	or	wholesale	copying

• This	should	be	obvious,	but	…
– Don’t	hire	someone	to	do	your	assignments
– Don’t	ask	someone	outside	of	the	class	(a	parent,	a	student	from	a	

previous	semester,	sourceforge)	to	help	you
– Don’t	use	search	engines	to	look	for	solutions	on-line	or	in	

someone’s	unprotected	GitHub (and	don’t	put	your	course	project	
solutions	in	unprotected	GitHubs please!)	

– It	is	supposed	to	be	your	own	work	after	all!

8/30/16 42Fall	2016	- Lecture	#1

EECS	Grading	Policy
• http://www.eecs.berkeley.edu/Policies/ugrad.grading.shtml

“A	typical	GPA	for	courses	in	the	lower	division	is	2.7.”
– The	faculty	finally	figured	out	that	except	for	MCB,	EECS	is	the	hardest	

graded	major	on	campus!
– This	semester:	target	GPA	will	be	3.0-3.1	…

• On	Job/Intern	Interviews:	They	grill	you	with	technical	
questions,	give	you	coding	assignments,	and	review	your	
code--what	you	know,	not	your	GPA!

8/30/16 43Fall	2016	- Lecture	#1

Architecture	of	a	typical	Lecture

44

Attention

Time	(minutes)
10 35 60 78 90

Clickers
Administrivia

“And	in	
conclusion…”

Full

Clickers
Fun/News

8/30/16 Fall	2016	- Lecture	#1

Break!

8/30/16 45Fall	2016	- Lecture	#1

Agenda

• Thinking	about	Machine	Structures
• Great	Ideas	in	Computer	Architecture
• What	You	Need	to	Know	About	This	Class
• Everything	is	a	Number

8/30/16 Fall	2016	- Lecture	#1 46

8/30/16 47http://www.ruthmalan.com

Computer	Data
• Computers	represent	data	as	binary	values
• Unit	element:	bit

– Just	two	possible	values,	0	or	1
– Can	be	efficiently	stored/communicated/manipulated	in	
hardware

• Use	many	bits	to	store	more	complex	information,	e.g.
– Byte:	8	bits,	can	represent	28 =	256	different	values
– Word,	e.g.	4	bytes	(32	bits)	to	represent	232 different	values
– 64-bit	floating	point	numbers
– Text	files,	databases,	… (many	bytes)
– Computer	program	

8/30/16 Fall	2016	- Lecture	#1 48

Binary	Number	Conversion

Binary	à Decimal

1001010two = ?ten

Decimal	à Binary

74ten = ?two

8/30/16 49Fall	2016	- Lecture	#1

Binary	Digit Decimal	Value

0 0 x 20 = 0

1 1 x 21 = 2

0 0 x 22 = 0

1 0 x 23 = 8

0 0 x 24 = 0

0 0 x 25 = 0

1 1 x 26 = 64

S = 74ten

Decimal Binary	(odd?)

74 0

/2 = 37 1

/2 = 18 0

/2 = 9 1

/2 = 4 0

/2 = 2 0

/2 = 1 1

Collect à 1001010two

Hexadecimal

• Problem:	many	digits
– e.g.	7643ten =	1110111011011two

• Solutions:
– Grouping: 1		1101		1101		1011two
– Hexadecimal: 1DDBhex
– Octal: 1	110	111	011	011two

16733oct

Binary Hex

0000 0

0001 1

0010 2

0011 3

0100 4

0101 5

0110 6

0111 7

1000 8

1001 9

1010 A

1011 B

1100 C

1101 D

1110 E

1111 F
8/30/16 Fall	2016	- Lecture	#1 50

The	Computer	Knows	it,	too

Output Decimal: 1234
Hex: 4d2
Octal: 2322
Literals (not supported by all compilers):
0x4d2 = 1234 (hex)
0b10011010010 = 1234 (binary)
02322 = 1234 (octal, prefix 0 - zero)

8/30/16 Fall	2016	- Lecture	#1 51

E.g.	1GiByte	disk	versus	1GByte	disk

Marketing	exploits	 this:	1TB	disk	à 100GB	less	than	1TiB

Large	Numbers

Decimal

Suffix Multiplier Value
K 103 1000
M 106 1000,000
G 109 1000,000,000
T 1012 1000,000,000,000

Binary	(IEC)

Suffix Multiplier Value
Ki 210 1024
Mi 220 1048,576
Gi 230 1073,741,824
Ti 240 1099,511,627,776

https://en.wikipedia.org/wiki/Byte
8/30/16 Fall	2016	- Lecture	#1 52

Signed	Integer	Representation

Sign	&	magnitude	(8-bit	example):

Rules	for	addition,	a	+	b:
• If	(a>0	and	b>0):	add,	sign	0
• If	(a>0	and	b<0):	subtract,	sign	…
• …
• +0,	-0	à are	they	equal?	comparator	must	handle	special	case!

Cumbersome
• ”Complicated”	hardware:	reduced	speed	/	increased	power
• Is	there	a	better	way?

sign 7-bit	magnitude (0	…	127)

8/30/16 Fall	2016	- Lecture	#1 53

4-bit	Example

7

+ -3

4

8/30/16 54

7

+ -3 +	16

4 +	16

7

+ 13

4 +	16

0111

+ 1101

1	0100 0100 +	1	0000

Decimal Binary

• Map	negative	à positive	numbers
§ Example	for	N=4-bit:					-3	à 24	– 3	=	13
§ “Two’s	complement”
§ No	special	rules	for	adding	positive	and	negative	numbers

-8 -7 … -1 0 1 … 7

0 1 … 7 8 9 … 15

+	24 =	16

8/30/16 Fall	2016	- Lecture	#1 55

Two’s	Complement
(8-bit	example)

Signed	Decimal Unsigned	Decimal Binary	Two’s	Complement

-128 128 1 0 0 0 	 0 0 0 0

-127 129 1 0 0 0 	 0 0 0 1

… … …

-2 254 1 1 1 1 	 1 1 1 0

-1 255 1 1 1 1 	 1 1 1 1

0 0 0 0 0 0 	 0 0 0 0

1 1 0 0 0 0 	 0 0 0 1

… … . . .

127 127 0 1 1 1 	 1 1 1 1

Note:					Most	significant	bit	(MSB)	equals	sign

+256

+0

Unary	Negation	(Two’s	Complement)
4-bit	Example	(-8ten …	+7ten)

Brute	Force	&	Tedious Clever	&	Elegant

16ten 10000two
- 3ten - 0011two
13ten 1101two

16ten 10000two
- 13ten - 1101two

3ten 0011two

”largest”	4-bit	number	+	1

8/30/16 Fall	2016	- Lecture	#1 56

15ten 01111two
- 3ten - 0011two
12ten 1100two invert

+ 1ten + 0001two
13ten 1101two

Your	Turn
• What	is	the	decimal	value	of	the	following	
binary	8-bit	2’s	complement	number?

1110 0001two

Answer Value
A 33ten
B -31ten
C 225ten
D -33ten
E None	of	the	above

8/30/16 Fall	2016	- Lecture	#1 57

Addition
4-bit	Example

Unsigned Signed	(Two’s	Complement)
3ten 0011two

+					4ten +			0100two
7ten 0111two

3ten 0011two
+			11ten +			1011two

14ten 1110two

3ten 0011two
+					4ten +			0100two

7ten 0111two

3ten 0011two
+			-5ten +			1011two

-2ten 1110two

No	special	rules	for	two’s	complement	signed	addition
8/30/16 Fall	2016	- Lecture	#1 58

Overflow
4-bit	Example

Unsigned Signed	(Two’s	Complement)
13ten 1101two

+					14ten +			1110two
27ten 1 1011two

7ten 0111two
+			1ten +			0001two

8ten 0 1000two

-3ten 1101two
+					-2ten +			1110two

-5ten 1 1011two

7ten 0111two
+			1ten +			0001two
-8ten 0	1000two

Carry-out	à Overflow Carry-out	à Overflow

carry-out	but	no	overflowcarry-out	and	overflow

no	carry-out	but	overflowno	carry-out	and	no	overflow

8/30/16 Fall	2016	- Lecture	#1 59

Overflow	Detection
4-bit	Example

Unsigned

• Carry-out	indicates	overflow	

Signed	(Two’s	Complement)

• Overflow	if
– Signs	of	operands	are	equal

AND
– Sign	of	result	differs	from	sign	

of	operands

• No	overflow	when	signs	of	
operands	differ

Overflow	rules	depend	on	operands	(signed	vs	unsigned)

8/30/16 Fall	2016	- Lecture	#1 60

Sign	Extension

Decimal Binary

4-bit 8-bit 32-bit

3ten 0011two 0000	0011two 0000	0000	0000	0011two
-3ten 1101two 1111	1101two 1111	1111	1111	1101two

• Why	is	this	relevant?
• Assignment	differs	for	signed	(above)	and	unsigned	numbers

• Compiler	knows	(from	type	declaration)
• Different	assembly	instructions	for	copying	signed/unsigned	data

8/30/16 Fall	2016	- Lecture	#1 61

Your	Turn

• Which	range	of	decimals	can	be	expressed	
with	a	6-bit	two’s	complement	number?

8/30/16 62Fall	2016	- Lecture	#1

Answer Range
A -32	…	32
B -64	…	63
C -31	…	32
D -16	…	15
E -32	…	31

Answer

• Which	range	of	decimals	can	be	expressed	
with	a	6-bit	two’s	complement	number?

8/30/16 63Fall	2016	- Lecture	#1

Answer Range
A -32	…	32
B -64	…	63
C -31	…	32
D -16	…	15
E -32	…	31

And	In	Conclusion	…	(1/2)
• CS61C:	

– High	performance	by	leveraging	computer	architecture:
• Strength	and	weaknesses	(e.g.	cache)
• Performance	features	(e.g.	parallel	instructions)

– Learn	C	and	assembly	facilitate	access	to	machine	features
• Basis:	five	great	ideas	in	computer	architecture

1. Abstraction:	Layers	of	Representation/Interpretation
2. Moore’s	Law
3. Principle	of	Locality/Memory	Hierarchy
4. Parallelism
5. Dependability	via	Redundancy

• Performance	Measurement	and	Improvement

8/30/16 Fall	2016	- Lecture	#1 64

And	In	Conclusion	…	(2/2)

• Everything	is	a	Number!
– Collections	of	bits	can	store	and	communicate	

arbitrary	digital	data
– Even	programs	are	represented	by	bits

• Two’s	complement	representation	avoids	
special	rules	for	addition	of	negative	numbers

8/30/16 Fall	2016	- Lecture	#1
65

65

And	in	Conclusion:
Everything	is	a	Number

https://www.cartoonstock.com
8/30/16 66Fall	2016	- Lecture	#1

