CS 61C
Great Ideas in Computer Architecture
(a.k.a. Machine Structures)
Lecture 1: Course
Introduction

Instructors:
Bernhard Boser

Randy H. Katz i
http://inst.eecs.berkeley. edu/~cs61c/

Agenda

Thinking about Machine Structures
Great Ideas in Computer Architecture
What You Need to Know About This Class
Everything is a Number

Agenda

* Thinking about Machine Structures

* Great Ideas in Computer Architecture

* What You Need to Know About This Class
* Everything is a Number

8/30/16 Fall 2016 - Lecture #1

Most Popular Programming Languages

Language Rank Types Spectrum Ranking

—> 2w s

C is used to write software where speed and flexibility is important, such as in
embedded systems or high-performance computing.

e @07 SO

Designed to allow the creation of programs that can run on different platforms with little
or no modification, Java is a popular choice for Web applications.

sowen @ T SN

A scripting language that is often used by software developers to add programmability
to their applications, such as engineering-analysis tools or animation software.

‘on 278 BRI
5 R [i=)
6. C# 0o
e R
8

&
&

. JavaScript &0
&
&

9. Ruby
10. Go
11. Swift D

12. Arduino E
8/30/16 Fall 2016 - Lecture 4

{1 4]]

Why You Need to Learn C!

8/30/16 Fall 2016 - Lecture #1

CS61C

IS NOT really about C
Programming

* |tis about the hardware-software interface

— What does t
achieve the

e Cisclosetot

ne programmer need to know to
nighest possible performance

ne underlying hardware, unlike

languages like Python and Java!

— Allows us to

talk about key hardware features in

higher level terms

— Allows programmer to explicitly harness
underlying hardware parallelism for high
performance

8/30/16

Fall 2016 - Lecture #1

Old School CS61C

8/30/16 Fall 2016 - Lecture #1

New School CS61C (1/2)

kﬁ‘ -:
-

- -

e

Personal
Mobile
Devices

8/30/16 Fall 2016 - Lecture #1 8

—

warehouse scale
computer

- —_——

—

8/30/16 Fall 2016 - Lecture #1 9

New-School Machine Structures

Software Hardware
Parallel Requests

Assigned to computer

Warehouse &
-Scale §

e.g., Search “cats” Computer §
Harness
Parallel Threads 5 /ic/icm &
Assigned to core Achieve High
e.g., Lookup, Ads Performance

Parallel Instructions
>1 instruction @ one time
e.g., 5 pipelined instructions

Parallel Data

Input»/Oﬁtput

/

Functional
>1 data item @ one time @'E[},JC'UO” Unit(s) Unit(s)
Hepttd

e.g., Add of 4 pairs of words

Hardware descriptions

All gates functioning in
parallel at same time

' Logic Gates
8/30/16 Fall 2016 - Lecture #1 / :::?/

setstwict 5 B A+B
sHetstotl + + +
iz /43 B%l }/KZ 3773
—
,/

I
Main Memory / e ','
I

New-School Machine Structures

Project 4

Software B Hardware
Parallel Requests
: Warehouse
Assigned to computer Scale &
e.g., Search “cats” y Computer §
Harness

Parallel Threads , fc/icm &

Assigned to core Achieve High

e.g., Lookup, Ads Perfarmance

Parallel Instructions
>1 instruction @ one time
e.g., 5 pipelined instructions

Parallel Data

>1 data item @ one time
e.g., Add of 4 pairs of words

Memory _.-
£

Input/Ou

Hardware descriptions

All gates functioning in
parallel at same time

A\
N
0O
)
(@)
>
L3
=
<
)
&
w

\
- \\
tput / Core \\

}l{Jctlon U

d 18
seivhotcl
e
\ shstotal

oo

nit(s) FupctionzV
Unit(s)

o+BoA;+B ,+B,A3;+B;

'

P2

,/

Main Memory e e

8/30/16

Fall 2016 - Lecture #1 /

/ Logic Gates
Project 2

s

11

Agenda

* Great Ideas in Computer Architecture

8/30/16 Fall 2016 - Lecture #1

12

Five Great Ideas
in Computer Architecture
1. Abstraction
(Layers of Representation/Interpretation)
2. Moore’s Law (Designing through trends)
3. Principle of Locality (Memory Hierarchy)

4. Parallelism

5. Dependability via Redundancy

13
8/30/16 Fall 2016 - Lecture #1 13

Great Idea #1: Abstraction
(Levels of Representation/Interpretation)

High Level Language f,?km]";f,["klﬂ']
Program (e.g., C) v[k+1] = temp;
Compiler
P lw $t0, 0($2) Anything can be represented
Assembly Language lw St1, 4(S2) as a number
Program (e.g., MIPS) szv 2:&1) Zggg i.e., data or instructions
Assembler
i 0000 1001 1100 0110 1010 1111 0101 1000
Machine Language 1010 1111 0101 1000 0000 1001 1100 0110
Program (MIPS) 1100 0110 1010 1111 0101 @ s 1
| 0101 1000 0000 1001 1100 (48 1
Machine]
Interpretation : :
Register File
Hardware Architecture Description []
(e.g., block diagrams) ALU
Architecture B -
Implementation [
o —

Logic Circuit Description
(Circuit Schematic Diagrams) |
8/30/16 Fall 2016 - Lecttife i 14

LOG, OF THE NUMBER OF
COMPONENTS PER INTEGRATED FUNCTION

2: Moore’s Law

Predicts:
2X Transistors / chip
every 2 years

O=MNDUudboO~NDOW

Fig. 2 Number of components per Integrated
function for minimum cost per component
extrapolated va time,

Gordon Moore
Intel Cofounder
B.S. Cal 1950!

15

Shrinking chips
Number and length of transistors bought per $

20
e 16nm

2012 2014* 2015*

* Forecast Source: Linley Group

Cost per transistor
is rising as transistor
size continues to
shrink

2004

-

180nm Nanometres (nm)

2002

Jim Gray’s Storage Latency Analogy:
How Far Away is the Data?

Andromeda
10° Tape /Optical —2 2,000 Years
Robot
108 Disk Pluto 2 Years
— rﬁj—*““ Jim Gray
1.5 hr .
100 Main Memory gmento P Turing Award
—> B.S. Cal 1966
10 On Board Cache ~_ | his Campus 10 min Ph.D. Cal 1969!
2 On Chip Cache This Room
1 Registers FMy Head 1 min

\J/16 Fall 2016 LectureNt1 17
(ns)

Great Idea #3: Principle of Locality/

Memory Hierarchy

Processor SUPER FAST
SUPER EXPENSIVE
| TINY CAPACITY
",J' REGISTER R)
m“‘\ EXPENSIVE
v
y LEVEL 1 (L1) CACHE \ SMALL CAPACITY
EDO, SD-RAM, DDR-SDRAM, RD-RAM , PHYSICAL MEMORY FAST
PRICED REASONABLY
and More... AVERAGE CAPACITY
SSD, Flash Drive SOLID STATE MEMORY AVERAGE SPEED
O
y
y NON-VOLATILE FLASH-BASED MEMORY \
y \
Mechanical Hard Drives VIRTUAL MEMORY SLOW
4 CHEAP
/ e h LARGE CAPACTITY
y
PVEVVIVSE Pt Cartrre 4 23

Great Id

Time |

Instruction
fetch

instruction |

8/30/16

ed

< Preamble >
i

Fork()
v v v v ¥
Worker Worker Worker Worker Worker
Thread Thread Thread Thread Thread
| i | |]
Join()

!

(Post-processing)

Fall 2016 - Lecture #1

4: Parallelis

Time 7

Time 8

19

Caveat: Amdahl’s Law

100
- Performance = 1
increase ratio x4 1’;”‘
x: Ratio of code that must be <51 165G [(580 oo 1.7
executed sequentially core | | core | |cora | | core 22nm B
2 N: Number of CPU cores cpu | [cpPul[cpul [cPu »~”
© core | |core | |core | |core i
@ —
@ CPU |/ cPU 32nm &
g Ccore | core
£ 10 CPU | CPU
% core | core x=10%
— ~— 45nm T e
£ I o il >
o

CPU

core X=50%

90nm No significant throughput improvement if ratio

of code that can be executed in parallel is low

1|
2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

Fig 3 Amdahl’s Law an Obstacle to Improved Performance Performance will not rise in
the same proportion as the increase in CPU cores. Performance gains are limited by the ratio
of software processing that must be executed sequentially. Amdahl’s Law is a major obstacle
in boosting multicore microprocessor performance. Diagram assumes no overhead in parallel
processing. Years shown for design rules based ondntebpianned-and actual technology. Core
count assumed to double for each rule generation.

Gene Amdahl
Computer Pioneer

20

Coping with Failures

o 4 disks/server, 50,000 servers
* Failure rate of disks: 2% to 10% / year

— Assume 4% annual failure rate

* On average, how often does a disk fail?
a) 1/ month
b) 1/week
c) 1/day
d) 1/hour

8/30/16 Fall 2016 - Lecture #1

21

Coping with Failures

o 4 disks/server, 50,000 servers
* Failure rate of disks: 2% to 10% / year

— Assume 4% annual failure rate

* On average, how often does a disk fail?

a) 1/ month
b) 1/week 50,000 x 4 = 200,000 disks
c) 1/day 200,000 x 4% = 8000 disks fail

H d) 1/hour H 365 days x 24 hours = 8760 hours

8/30/16 Fall 2016 - Lecture #1 22

Great Idea #5:
Dependability via Redundancy

 Redundancy so that a failing piece doesn’t
make the whole system fail

2 of 3 agree

FAIL!

Increasing transistor density reduces the cost of redundancy
8/30/16 Fall 2016 - Lecture #1 23

Great Idea #5:
Dependability via Redundancy

* Applies to everything from datacenters to storage to
memory to instructors

— Redundantdatacenters so that can lose 1 datacenter but
Internet service stays online

— Redundantdisks so that can lose 1 disk but not lose data
(Redundant Arrays of Independent Disks/RAID)

— Redundant memory bits of so that can lose 1 bit but no data
(Error Correcting Code/ECC Memory)

......
-~ ~

8/30/16 F{ 24

Your Turn

* You have 8 disks, 1TB each.

— What is the minimum number of extra disks to

insure that no information is lost if a single disk
fails?

A) 8
B) log,8=3
C)1
D) 2

E) 0 Rule: Each bit row has an odd The missing bit
number of ones (odd parity) must be one!

8/30/16 Fall 2016 - Lecture #1 25

Break!

26

Fall 2016 - Lecture #1

8/30/16

Understandmg Computer Architecture

de.pinterest.com
8/30/16 Fall 2016 - Lecture #1 27

Why is Architecture Exciting Today?

I Stuttering [Chip introduction
@ Transistors per chip, ‘000 ® Clock speed (max), MHz @ Thermal design power*, w dates, selected
Transistors bought per $, m Pentium 4 | | Xeon | |Core 2 Duo
20 Log scale

Pentium III

15 107
10 Pentium II
o

5 Pentium °

— 1T 171 1 770 10°
200204 06 08 10 12 15 486 CPU S d F|
peed Flat
8086 386

4004

-1
| L 1 T T T 1 T T 7 1 T T 17 r T T T 17 T T 1 [1T T 1T " T T T T T T T TT7 10

1970 75 80 85 90 95 2000 05 10 15

Sources: Intel; press reports; Bob Colwell; Linley Group; IB Consulting; The Economist *Maximum safe power consumption

8/30/16 Fall 2016 - Lecture #1

28

Motivation:

Code (C)

double sum(// add up all values in array
double *array, // array

Example

Execution time

$ gcc array.c
$./a.out

int n, // array size 1.0X time for inc 1
int inc) // index increment . .

{ 1.0X time for 1inc 3
double res = 0; 2.3X time for inc 15485867
int index = 0;
for (int i = 0; i < n; i++) {

index = (index + inc) % n; Consecutive is >2x faster!
res += arrayl[index];
}
return res; Relevance.
} []
 E.g. Vector vs HashMap
* Independent of programming
language
8/30/16 Fall 2016 - Lec¥e #1 29

8/30/16

Complete Code, Page 1

#include <stdlib.h>
#include <stdio.h>
#include <time.h>

/ X

* /

sum elements in array of length n, use index increment jing
note: for ing¢ > 1, array elements are accessed non-consecutively

beware: choose ing¢ such that GCD(N, ing) = 0. N is the array size.

double sum(// add up all values in array

int

double *array, // array
int n, // array size
int inc) // index increment

double res = 0;

int index = 0;

for (int 1 = 0; 1 < n; i++) {
index = (index + inc) % n;
res += array[index];

b

return res;

main() {
const int N = 50 * 1000 *x 1000; // array size
const int INC[] = { 1, 3, 15485867 };

// create and initialize array

double *array = malloc(N * sizeof (double));
for (int 1 = 0; i < N; i++) array[i] = i;
double element_sum = 0.5 * N % (N - 1);

Fall 2016 - Lecture #1

30

8/30/16

Complete Code, Page 2

// baseline ... processor time for increment = 1
printf("Establish baseline ...\n");
const int AVG = 10;
double exec_for_inc_1 = 0;
for (int i=0; 1i<AVG; 1i++) {

clock _t start = clock();

double s = sum(array, N, 1);

exec_for_inc_1 += ((double)(clock()-start))/CLOCKS_PER_SEC;
b

exec_for_inc_1 /= AVG;

// repeat to make sure result is consistent
for (int r = 0; r < 2; r++) {
for (int 1 = @; 1 <sizeof(INC)/sizeof(int); i++) {
// clock measures processor time in units CLOCKS_PER_SEC
clock_t start = clock();
double s = sum(array, N, INC[i]);

double exec_time = ((double)(clock()-start))/CLOCKS_PER_SEC;

// check if we are getting the correct sum ...
if (s != element_sum) printf("INCORRECT RESULT: %g != %g ",
s, element_sum);
printf("%4.1f X time for increment %9d\n",
exec_time/exec_for_inc_1, INC[i]);
by
printf(”"\n");

Fall 2016 - Lecture #1

31

8/30/16

How to getan A in 61C

"Rather than learning how to solve that, shouldn't
we be learning how to operate software that can
solve that problem?"

Fall 2016 - Lecture #1

32

Agenda

e What You Need to Know About This Class

8/30/16 Fall 2016 - Lecture #1

33

Course Information

Course Web: http://inst.eecs.Berkeley.edu/~cs61c/
Instructors: Bernhard Boser and Randy H. Katz

Teaching Staff:
— Co-Head TAs: Derek Ahmed and Stephan Liu

— Lead TAs: Manu Goyal, Rebecca Herman, Alex Khodaverdian,
Jason Zhang

— 20 TAs + 10 Tutors (see webpage)

Textbooks: Average 15 pages of reading/week (can rent!)
— Patterson & Hennessey, Computer Organization and Design, 5/e
— Kernighan & Ritchie, The C Programming Language, 2"° Edition
— Barroso & Holzle, The Datacenter as a Computer, 2"° Edition

Piazza:

— Every announcement, discussion, clarification happens there!

8/30/16 Fall 2016 - Lecture #1 34

CS61c House Rules in a Nutshell

* Please don’t disturb the instructors setting up or tearing
down just before/after lecture

 Webcast? Yes!

e Labs and discussion after NEXT Tuesday’s lecture

* Wait listed? Enroll in any available section/lab, swap later
* Excused Absences: Let us know by second week

 Midterms are in class9/27 and 11/1;
Final is 12/16 at 7-10 PM

e Labs are partnered and Projects are solo (5)

— Discussionis Good, but Co-Developing/Sharing/Borrowing
Project Code or Circuits is Bad

— No Public Repos Please: Don’t Look, Don’t Publish

e Join Piazza for more details ... see
http://inst.eecs.berkeley.edu/~cs61c/fal6/

8/30/16 Fall 2016 - Lecture #1 35

Course Grading

EPA: Effort, Participation and Altruism (5%)
Homework (5%)
Partnered Labs (10%)

Solo Projects (30%)

1. Build your own Git repo (C)

2. Non-Parallel Application (MIPS & C)

3. Computer Processor Design (Logisim)

4. Parallelize for Performance, SIMD, MIMD

5. Massive Data Parallelism (Spark on Amazon EC2)

Two midterms (12.5% each): 9/17 and 11/1
Final (25%): 12/16 @ 7-10pm (Last Exam Slot!)
Performance Competition for honor (and EPA)

EPA!

e Effort

— Attending prof and TA office hours, completingall
assignments, turningin HW, doing reading quizzes

* Participation
— Attending lecture and voting using the clickers

— Asking great questionsin discussion and lecture and
making it more interactive

e Altruism
— Helping othersin lab or on Piazza
EPA! points have the potential to bump students up

to the next grade level! (but actual EPA! scores are
internal)

8/30/16 Fall 2016 - Lecture #1

Peer Instruction

* |ncrease real-time learning in lecture,
test understanding of concepts vs. details

« Ascomplete a “segment” ask multiple-choice
guestion

— 1-2 minutes to decide yourself
— 2 minutesin pairs/triples to reach consensus.

— Teach others!
— 2 minute discussion of answers, questions,
clarifications
* You can get transmitters from the ASUC bookstore

— We'll start this next week
— No web-based clickers, sorry!

8/30/16 Fall 2016 - Lecture #1

Late Policy ... Slip Days!

Assignmentsdue at 11:59:59 PM
You have 3 slip day tokens (NOT hour or min)

Every day your project or homework is late
(even by a minute) we deduct a token

After you’ve used up all tokens, it’s 33%
deducted per day.
— No credit if more than 3 days late

— Save your tokens for projects, worth more!!

No need for sob stories, just use a slip day!

Policy on Assignments and
Independent Work

With the exception of laboratories thatexplicitly permit you to work with
partners, ALLOTHER WORK IS TO BE YOUR OWN.

You are encouraged to discuss your assignments with other students, and
extra credit will be assigned to students who help othersvia EPA, but what
you hand in MUST BE YOUR OWN WORK.

It is NOT acceptable to copy solutions from other students.
It is NOT acceptable to copy (or start your) solutions from the Web.

It is NOT acceptable to use PUBLIC github archives (whetherlookingat OR
giving your answers away). PLEASE PUT A PASSWORD ON IT!

We have tools and methods, developed over many years, for detecting this.
You WILL be caught, and the penalties WILL be severe.

At the minimum F in the course, and a letter to your university record
documentingtheincidence of cheating.

(We’ve caught peoplein recent semesters!)
Both Giver and Receiver are equally culpable and suffer equal penalties

8/30/16 Fall 2016 - Lecture #1 41

Collaboration in Black and White

Good Collaboration
— High level discussion and brainstorming, stoppingshort of code
snippets
Bad Collaboration
— Sitting together and co-writing code, inspecting each other’s code,
taking (or giving) code whether in exchange or wholesale copying
This should be obvious, but ...
— Don’t hiresomeoneto do your assignments

— Don’t ask someone outside of the class (a parent, a studentfroma
previous semester, sourceforge) to help you

— Don’t use search engines to look for solutions on-line or in
someone’s unprotected GitHub (and don’t put your course project
solutionsin unprotected GitHubs please!)

— Itis supposedto be your own work after all!

https://www.interviewcake.com/google-interview-questions b g 2 H H

Practice Questi for the G le Intervi What Characterizes A
ractice Questions 1or the Googie interview .
g Google Interview
Google is known for having one of the hardest technical interviews. So it's not surprising QueStlon?
that the coding interview questions we hear about being asked at Google are some of
our hardest. Get ready to nail your SWE, SRE or SET interview! What makes a Google interview question different
from one that might be asked at Facebook,
The TWO Egg Problem » Amazon, Microsoft, Twitter, etc?
A building has 100 floors. One of the floors is the highest floor an egg can Nothing. Nothing at all.

be dropped from without breaking. If an egg is dropped from above that

floor keep reading The truth is, the specific question you get
»

asked has far more to do with the interviewer
assigned to you than it does the company
you're interviewing at.
Second Largest Item in BST »
Write a function to find the 2nd largest element in a binary search tree.
Our first thought might be to do an in-order traversal of the BST, but this
would take O(n) time and... keep reading »

There's no way to know ahead of time what
questions your interviewers will ask you. Your
interviewers' employer probably doesn't even
know what questions your interviewers will ask
you. There are literally thousands of possibilities
for what your interviewer could ask you. So the

Th e ca ke Th ief » strategy for winning at these interviews is not to

You are a renowned thief who has recently switched from stealing iearn® 2 bunch of Googse interview questions

precious metals to stealing cakes because of the insane profit margins.
You want to make off with the most valuable haul possible, and you...

and then hope that your interviewers ask you the

questions you've already learngg

8/30/16 Fall 2016 - Lecture #1 43

Architecture of a typical Lecture

N

Full ™. ~ -
. Clickers Clickers “Andin
Attention Administrivia Fun/News conclusion...”
10 35 60 78 90

Time (minutes)

8/30/16 Fall 2016 - Lecture #1 44

Break!

Fall 2016 - Lecture #1 45

8/30/16

Agenda

* Thinking about Machine Structures

* Great Ideas in Computer Architecture

* What You Need to Know About This Class
* Everything is a Number

8/30/16 Fall 2016 - Lecture #1 46

8/30/16

“Now that you have an overview of the system,
we’re ready for a little more detail”

http://www.ruthmalan.com

47

Computer Data

 Computers represent data as binary values

* Unit element: bit
— Just two possible values, O or 1

— Can be efficiently stored/communicated/manipulatedin
hardware

* Use many bits to store more complex information, e.g.
— Byte: 8 bits, can represent 28 = 256 different values
— Word, e.g. 4 bytes (32 bits) to represent 232 different values
— 64-bit floating pointnumbers
— Text files, databases, ... (many bytes)
— Computer program

Binary Number Conversion

Binary 2 Decimal Decimal 2 Binary
1001010two = ?ien 74,.. = ?two
0 0x20= 0 o\
1 1 x 2l = 2 /2 = 37 1
0 0 x22= 0 /2 = 18 0
1 0 x 23 = 8 /2 = 9 1
0 0 x24= 0 /2 = 4 0
\o 0 x 25= 0 /2 = 2 0
1 1 x 26 = 64 /2 = 1 1

Y = T, Collect =2 10010104,

8/30/16 Fall 2016 - Lecture #1

Hexadecimal | Binary | Hex_

0000
0001

* Problem: many digits 0010
0011

— e.g. 7643, = 1110111011011, Bl
0101
0110

e Solutions: 0111
1000

_Grouping: 1 1101 1101 lolltWO 1001

1010
1011

— Octal: 1110111 011 011,,, 10

1101

16733 1110

1111

— Hexadecimal: 1DDB,,

m m O O W » OW 00 N o uu p W N ~» O

8/30/16 Fall 2016 - Lecture #1

The Computer Knows it, too

#include <stdio.h>

int main() {
const int N = 1234;

printf(“Decimal: %d\n", N);
printf("Hex: %x\n", N);
printf(“Octal: %o\n", N);

printf("Literals (not supported by all compilers):\n");
printf("0x4d2 %d (hex)\n", 0x4d2);
printf("0b10011010010 %d (binary)\n", 0b10011010010);
printf("02322 %d (octal, prefix @ - zero)\n", 02322);

Output Decimal: 1234
Hex: 4d2
Octal: 2322
Literals (not supported by all compilers):

0x4d2 = 1234 (hex)
0b10011010010 = 1234 (binary)
02322 = 1234 (octal, prefix 0 - zero)

8/30/16 Fall 2016 - Lecture #1 51

Large Numbers

Decimal Binary (IEC)
mm mm

K 1000 1024

M 106 1000,000 Mi 220 1048,576

G 10° 1000,000,000 Gi 230 1073,741,824

T 1012 1000,000,000,000 Ti 240 1099,511,627,776

E.g. 1GiByte disk versus 1GByte disk
Marketing exploits this: 1TB disk = 100GB less than 1TiB

https://en.wikipedia.org/wiki/Byte

8/30/16 Fall 2016 - Lecture #1 52

Signed Integer Representation

Sign & magnitude (8-bit example):

@ 7-bit magnitude (0 ... 127)

Rules for addition, a + b:
 If(a>0and b>0): add, sign O
* If (a>0 and b<0): subtract, sign ...

 +0, -0 2 arethey equal? comparator musthandle special case!
Cumbersome

 "Complicated” hardware:reduced speed/ increased power
* Is therea better way?

8/30/16 Fall 2016 - Lecture #1 53

4-bit Example

Decimal > < Binary
7 7 7 0111
+ -3 + -3 +16 + 13 + 1101
4 4 +16 4+16 10100 0100 + 10000

* Map negative = positive numbers
= Example for N=4-bit: -3 > 24-3=13
= “Two’s complement”
= No special rules foradding positive and negative numbers

| 7 . 1]lo 1 . 7
o 1 . 7 |8 9 .. 15
\ —
+24=16

8/30/16 54

Two’s Complement
(8-bit example)

Signed Decimal Unsigned Decimal Binary Two’s Complement

-128 \ 128 T‘ooo 0000
2127 129 1lo00 0001
+256
e
) 254 1111 1110
-1 255 1111 1111
0 0 olooo 0000
1 +0 1 olooo 0001
e —
127 127 o111 1111

Note: Most significant bit (MSB) equals sign

8/30/16 Fall 2016 - Lecture #1

Unary Negation (Two’s Complement)

4-bit Example (-8, --- +7¢cn)
Brute Force & Tedious Clever & Elegant
”largest” 4-bit number + 1
/
16, 100004, - 15, 01111,,,
- 3., - 0011, - 3., - 0011,
13 1101,,,, 12, 1100,,,, invert
+ 1., + 0001,
16t~ 100004, 13, 1101,

- 13, - 1101,
3ten 001140

8/30/16 Fall 2016 - Lecture #1 56

Your Turn

* What is the decimal value of the following
binary 8-bit 2’s complement number?

1110 0001,

_Answer | Value

A 33,
B -31..,
C 225,
D -33..,
E None of the above

8/30/16 Fall 2016 - Lecture #1

57

Addition

4-bit Example

Unsigned Signed (Two’s Complement)
3ten OOlltwo 3ten OO11two
+ 4+ 01004, + 4en + 01004,
7ten O111two 7ten Ollltwo
3ten OOlltwo 3ten OOlltwo
+ 11ten + 1011two + 'Sten + 1011two
14ten 1110two '2ten 1110two

No special rules for two’s complement signed addition

8/30/16 Fall 2016 - Lecture #1

58

Overflow

4-bit Example
Unsigned Signed (Two’s Complement)
13ten 1101two _3ten 1101two
+ 14, + 1110, t -2y + 11104,
27ten @1011two '5ten @1011two
carry-out and overflow carry-out but no overflow
7ten Ollltwo 7ten Ollltwo
t lien + 0001, t lien + 0001,
8en (0)1000,,, 8, (01000,
no carry-out and no overflow no carry-out but overflow

Carry-out = Overflow Carry-outj/0ve:flow
8/30/16 Fall 2016 - Lecture #1

59

Overflow Detection
4-bit Example

Unsigned Signed (Two’s Complement)

e Carry-out indicatesoverflow ¢ Overflow if

— Signs of operands are equal
AND

— Sign of result differs from sign
of operands

* No overflow when signs of
operands differ

Overflow rules depend on operands (signed vs unsigned)

8/30/16 Fall 2016 - Lecture #1 60

Sign Extension

Cpegmal |y

4-bit 8-bit 32-bit
3ten 00110 0000 0011y, 0000 0000 0000 0011,
3ien 11014, 1111 1101, 1111 1111 1111 11014,

 Why isthis relevant?

* Assignment differs for signed (above) and unsigned numbers
 Compiler knows (from type declaration)
» Differentassemblyinstructionsfor copyingsigned/unsigned data

8/30/16 Fall 2016 - Lecture #1 61

Your Turn

* Which range of decimals can be expressed
with a 6-bit two’s complement number?

" answer | range

A -32 ... 32
B -64 ... 63
C -31... 32
D -16 ... 15
E -32 .31

8/30/16 Fall 2016 - Lecture #1

Answer

* Which range of decimals can be expressed
with a 6-bit two’s complement number?

" answer | range

A -32 ... 32
B -64 ... 63
C -31... 32
D -16 ... 15
E -32 .31

8/30/16 Fall 2016 - Lecture #1 63

And In Conclusion ... (1/2)

* CS61C:

— High performance by leveraging computer architecture:
» Strength and weaknesses (e.g. cache)

* Performance features (e.g. parallel instructions)
— Learn C and assembly facilitate access to machine features
e Basis: five great ideas in computer architecture

1. Abstraction: Layers of Representation/Interpretation
2. Moore’s Law

3. Principle of Locality/Memory Hierarchy
4. Parallelism

5. Dependabilityvia Redundancy
e Performance Measurement and Improvement

8/30/16 Fall 2016 - Lecture #1 64

And In Conclusion ... (2/2)

* Everything is a Number!

— Collections of bits can store and communicate
arbitrary digital data

— Even programs are represented by bits

* Two’s complement representation avoids
special rules for addition of negative numbers

8/30/16 Fall 2016 - Lecture #1 65
65

8/30/16

And in Conclusion:
Everything is a Number

11011100101110111
10011010101 ALL
1010101 = .
0101010101 j: ¢

lllll

lﬂlﬂllli/w & l‘ 00 Search ID: tmcn3298
SRR

T1IDINNNIN 14 vmene ci\
"PATA, PATA EVERYWHERE!"

¢ :-’»«%

https://www.cartoonstock.com
Fall 2016 - Lecture #1 66

