
CS	61C:	
Great	Ideas	in	Computer	Architecture	
Introduction	to	Assembly	Language	and	

MIPS	Instruction	Set	Architecture
Instructors:

Bernhard	Boser &	Randy	H.	Katz
http://inst.eecs.Berkeley.edu/~cs61c/fa16

9/13/16 Fall	2016	- Lecture	#5 1

Outline

• Assembly	Language
• MIPS	Architecture
• Registers	vs.	Variables
• MIPS	Instructions
• C-to-MIPS	Patterns
• And	in	Conclusion	…

9/13/16 Fall	2016	- Lecture	#5 2

Outline

• Assembly	Language
• MIPS	Architecture
• Registers	vs.	Variables
• MIPS	Instructions
• C-to-MIPS	Patterns
• And	in	Conclusion	…

9/13/16 Fall	2016	- Lecture	#5 3

Levels	of	
Representation/Interpretation

lw $t0,	0($2)
lw $t1,	4($2)
sw $t1,	0($2)
sw $t0,	4($2)

High	Level	Language
Program	(e.g.,	C)

Assembly		Language	
Program	(e.g.,	MIPS)

Machine		Language	
Program	(MIPS)

Hardware	Architecture	Description
(e.g.,	block	diagrams)

Compiler

Assembler

Machine	
Interpretation

temp	=	v[k];
v[k]	=	v[k+1];
v[k+1]	=	temp;

0000 1001 1100 0110 1010 1111 0101 1000
1010 1111 0101 1000 0000 1001 1100 0110
1100 0110 1010 1111 0101 1000 0000 1001
0101 1000 0000 1001 1100 0110 1010 1111

Architecture	
Implementation

Anything	can	be	represented
as	a	number,	

i.e.,	data	or	instructions

Logic	Circuit	Description
(Circuit	Schematic	Diagrams)

9/13/16 Fall	2016	- Lecture	#5 4

5

Assembly	Language
• Job	of	a	CPU	(Central	Processing	Unit,	aka	Core):	
execute	instructions

• Instructions:	CPU’s	primitives	operations
– Like	a	sentence:	operations	(verbs)	applied	to	
operands	(objects)	processed	in	sequence	…

– With	additional	operations	to	change	the	sequence
• CPUs	belong	to	“families,”	each	implementing	its	
own	set	of	instructions

• CPU’s	particular	set	of	instructions	implements	an	
Instruction	Set	Architecture (ISA)
– Examples:	ARM,	Intel	x86,	MIPS,	RISC-V,	
IBM/Motorola	PowerPC	(old	Mac),	Intel	IA64,	...

69/13/16 Fall	2016	- Lecture	#5

Assembly	Language High	Level	Language

79/13/16 Fall	2016	- Lecture	#5

Assembly	Language High	Level	Language

89/13/16 Fall	2016	- Lecture	#5

Clicker/Peer	Instruction

• For	a	given	function,	which	programming	
language	likely	takes	the	most	lines	of	code	
(from	most	to	least)?
A:	Python	>	MIPS	>	C
B:	C	>	Python	>	MIPS
C:	MIPS	>	Python	>	C
D:	MIPS	>	C	>	Python

99/13/16 Fall	2016	- Lecture	#5

Instruction	Set	Architectures

• Early	trend:	add	more	instructions	to	new	
CPUs	for	elaborate	operations
– VAX	architecture	had	an	instruction	to	multiply	
polynomials!

• RISC	philosophy	(Cocke IBM,	Patterson,	
Hennessy,	1980s)	– Reduced	Instruction	Set	
Computing
– Keep	the	instruction	set	small	and	simple,	in	order	
to	build	fast	hardware

– Let	software	do	complicated	operations	by	
composing	simpler	ones

109/13/16 Fall	2016	- Lecture	#5

MIPS
Green	Card

119/13/16 Fall	2016	- Lecture	#5
https://inst.eecs.berkeley.edu/~cs61c/resources/MIPS_Green_Sheet.pdf

Inspired	by	the	
IBM	360	

“Green	Card”

129/13/16 Fall	2016	- Lecture	#5

Outline

• Assembly	Language
• MIPS	Architecture
• Registers	vs.	Variables
• MIPS	Instructions
• C-to-MIPS	Patterns
• And	in	Conclusion	…

9/13/16 Fall	2016	- Lecture	#5 13

MIPS	Architecture
• MIPS:	semiconductor	company	that	built	one	of	
the	first	commercial	RISC	architectures	(1984-
2013,	acquired	by	Imagination	Technologies)

• Why	MIPS	instead	of	Intel	x86	(or	ARM)?
– MIPS	is	simple,	elegant;	avoid	getting	bogged	down	in	
gritty	details

– MIPS	(used	to	be)	widely	used	in	embedded	apps,	
e.g.,	consumer	electronics	and	network	routers;	x86	
little	used	in	embedded	and	lots	more	embedded	
computers	than	PCs

– Nevertheless,	cs61c	migrating	to	ARM	next	semester!

149/13/16 Fall	2016	- Lecture	#5

15

MIPS	Designs	Circa	2010

169/13/16 Fall	2016	- Lecture	#5

Assembly	Variables:	Registers

• Unlike	HLL	like	C	or	Java,	assembly	does	not	have	
variables	as	you	know	and	love	them
– More	primitive,	closer	what	simple	hardware	can	
directly	support

• Assembly	operands	are	objects	called	registers
– Limited	number	of	special	places	to	hold	values,	built	
directly	into	the	hardware

– Operations	can	only	be	performed	on	these!
• Benefit:	Since	registers	are	directly	in	hardware,	
they	are	very	fast	(faster	than	1	ns	- light	travels	1	
foot	in	1	ns!!!)

9/13/16 Fall	2016	- Lecture	#5 17

Outline

• Assembly	Language
• MIPS	Architecture
• Registers	vs.	Variables
• MIPS	Instructions
• C-to-MIPS	Patterns
• And	in	Conclusion	…

9/13/16 Fall	2016	- Lecture	#5 18

Number	of	MIPS	Registers

• Drawback:	Since	registers	are	in	hardware,	
there	are	a	limited	number	of	them
– Solution:	MIPS	code	must	be	carefully	written	to	
to	efficiently	use	registers

• 32	registers	in	MIPS
–Why	32?	Smaller	is	faster,	but	too	small	is	bad.	
Goldilocks	principle	(“This	porridge	is	too	hot;	This	
porridge	is	too	cold;	this	porridge	is	just	right”)

• Each	MIPS	register	is	32	bits	wide
– Groups	of	32	bits	called	a	word in	MIPS	ISA

9/13/16 Fall	2016	- Lecture	#5 19

Names	of	MIPS	Registers

• Registers	are	numbered	from	0	to	31
• Each	register	can	be	referred	to	by	number	or	name
• Number	references:
– $0,	$1,	$2,	…	$30,	$31

• For	now:
– $16	- $23		è $s0	- $s7 (can	hold	things	like	C	variables)
– $8	- $15 è $t0	- $t7 (can	hold	temporary	variables)
– Later	will	explain	other	16	register	names

• In	general,	use	names	to	make	your	code	more	
readable

9/13/16 Fall	2016	- Lecture	#5 20

C,	Java	Variables	vs.	Registers

• In	C	(and	most	HLLs):
– Variables	declared	and	given	a	type
• Example: int fahr, celsius;

char a, b, c, d, e;

– Each	variable	can	ONLY	represent	a	value	of	the	
type	it	was	declared	(e.g.,	cannot	mix	and	match	
int and	char variables)

• In	Assembly	Language:
– Registers	have	no	type;
– Operation determines	how	register	contents	are	
interpreted

9/13/16 Fall	2016	- Lecture	#5 21

Outline

• Assembly	Language
• MIPS	Architecture
• Registers	vs.	Variables
• MIPS	Instructions
• C-to-MIPS	Patterns
• And	in	Conclusion	…

9/13/16 Fall	2016	- Lecture	#5 22

Addition	and	Subtraction	of	Integers

• Addition	in	Assembly
– Example: add $s0,$s1,$s2 (in	MIPS)
– Equivalent	to: a	=	b	+	c	 (in	C)
where		C	variables	⇔MIPS	registers	are:

a	⇔ $s0,	b	⇔ $s1,	c	⇔ $s2	
• Subtraction	in	Assembly
– Example: sub $s3,$s4,$s5 (in	MIPS)
– Equivalent	to: d	=	e	- f	 (in	C)
where		C	variables	⇔MIPS	registers	are:

d	⇔ $s3,	e	⇔ $s4,	f	⇔ $s5	

9/13/16 Fall	2016	- Lecture	#5 23

Addition	and	Subtraction	of	Integers	
Example	1

• How	to	do	the	following	C	statement?
a	=	b	+	c	+	d	- e;

• Break	into	multiple	instructions
add $t0, $s1, $s2 # temp = b + c
add $t0, $t0, $s3 # temp = temp + d
sub $s0, $t0, $s4 # a = temp - e

• A	single	line	of	C	may	break	up	into	several	lines	of	MIPS
• Notice	the	use	of	temporary	registers	– don’t	want	to	

modify	the	variable	registers	$s
• Everything	after	the	hash	mark	on	each	line	is	ignored	

(comments)

9/13/16 Fall	2016	- Lecture	#5 24

Immediates
• Immediates are	numerical	constants
• They	appear	often	in	code,	so	there	are	
special	instructions	for	them

• Add	Immediate:
addi $s0,$s1,-10 (in	MIPS)

f	=	g	- 10	 (in	C)
where	MIPS	registers	$s0,$s1 are	associated	with	
C	variables	f,	g

• Syntax	similar	to	add instruction,	except	that	
last	argument	is	a	number	instead	of	a	register

add $s0,$s1,$zero (in	MIPS)
f	=	g	 (in	C)

9/13/16 Fall	2016	- Lecture	#5 25

Overflow in Arithmetic
• Reminder: Overflow occurs when there

is an error in arithmetic due to the
limited precision in computers

• Example (4-bit unsigned numbers):
15 1111

+ 3 + 0011
18 10010

• But we don’t have room for 5-bit
solution, so the solution would be
0010, which is +2, and “wrong”

9/13/16 Fall	2016	- Lecture	#5 26

Overflow handling in MIPS
• Some	languages	detect	overflow	(Ada),	

some	don’t	(most	C	implementations)
• MIPS	solution	is	two	alternative	arithmetic	instructions:
– Cause	overflow	to	be	detected	(e.g.,	calculations):

• add	(add)
• add	immediate	(addi)	
• subtract	(sub)

– Don’t	cause	overflow	detection	(e.g.,	pointer	arithmetic)
• add	unsigned	(addu)
• add	immediate	unsigned	(addiu)	
• subtract	unsigned	(subu)

• Compiler	selects	appropriate	arithmetic
–MIPS	C	compilers	produce	addu,	addiu,	subu

9/13/16 Fall	2016	- Lecture	#5 27

Break!

9/13/16 Fall	2016	- Lecture	#5 28

Processor

Control

Datapath

Data	Transfer:
Load	from	and	Store	to memory

PC

Registers

Arithmetic	&	Logic	Unit
(ALU)

Memory
Input

Output

Bytes

Enable?
Read/Write

Address

Write	Data		=	
Store	to	
memory

Read	Data	=	
Load	from
memory

Processor-Memory	 Interface I/O-Memory	Interfaces

Program

Data

9/13/16 Fall	2016	- Lecture	#5 29

Much	larger	place
To	hold	values,	but	

slower	than	registers!

Fast	but	limited	place
To	hold	values

0
1
2
3
…

Memory	Addresses	are	in	Bytes

• Data	typically	smaller	than	32	bits,	but	rarely	
smaller	than	8	bits	(e.g.,	char	type)–works	fine	if	
everything	is	a	multiple	of	8	bits

• 8	bit	chunk	is	called	a	byte
(1	word	=	4	bytes)

• Memory	addresses	are	really
in	bytes,	not	words

• Word	addresses	are	4	bytes	
apart	
– Word	address	is	same	as	address	of	
leftmost	byte	– most	significant	byte
(i.e.	Big-endian	convention)	

9/13/16 Fall	2016	- Lecture	#5 30

Most	significant	byte	in	a	word

0
4
8
12
…

1
5
9
13
…

2
6
10
14
…

3
7
11
15
…

31			24 23			16 15					8 7					0
Most	significant	byte
gets	the	smallest	address

Transfer	from Memory	to	Register
• C	code

int A[100];
g = h + A[3];

• Using	Load	Word	(lw)	in	MIPS:
lw $t0,12($s3) #	Temp	reg $t0	gets	A[3]
add $s1,$s2,$t0 #	g	=	h	+	A[3]

Note:	 $s3 – base	register	(pointer)
12 – offset	in	bytes

Offset	must	be	a	constant	known	at	assembly	time

9/13/16 Fall	2016	- Lecture	#5 31

Transfer	from	Register	to Memory
• C	code

int A[100];
A[10] = h + A[3];

• Using	Store	Word	(sw)	in	MIPS:
lw $t0,12($s3) #	Temp	reg $t0	gets	A[3]
add $t0,$s2,$t0 #	Temp	reg $t0	gets	h	+	A[3]
sw $t0,40($s3) #	A[10]	=	h	+	A[3]

Note:	 $s3 – base	register	(pointer)
12,40 – offsets	in	bytes

$s3+12	and	$s3+40	must	be	multiples	of	4
9/13/16 Fall	2016	- Lecture	#5 32

Loading and Storing Bytes
• In	addition	to	word	data	transfers	
(lw,	sw),	MIPS	has	byte	data	transfers:
– load	byte:	lb
– store	byte:	sb

• Same	format	as	lw,	sw
• E.g.,		lb $s0,3($s1)
– contents	of	memory	location	with	address	=	sum	of	
“3”	+	contents	of	register	$s1 is	copied	to	the	low	
byte	position	of	register	$s0.

33

byte
loaded

zzz zzzzx

…is copied to “sign-extend”
This bit

xxxx xxxx xxxx xxxx xxxx xxxx$s0:

9/13/16 Fall	2016	- Lecture	#5

Speed	of	Registers	vs.	Memory

• Given	that	
– Registers:	32	words	(128	Bytes)
– Memory:	Billions	of	bytes	(2	GB	to	8	GB	on	laptop)

• and	the	RISC	principle	is…
– Smaller	is	faster

• How	much	faster	are	registers	than	memory??
• About	100-500	times	faster!
– in	terms	of	latency	of	one	access

349/13/16 Fall	2016	- Lecture	#5

Administrivia
• HW	#0	due	tonight!
• Lab	#1,	Project	#1	published	(soon)
• Guerrilla	Review	sessions	to	start	soon,	possibly	next	week

– C	practice

• Three	weeks	to	Midterm	#1!
– We	have	started	working	on	it.

359/13/16 Fall	2016	- Lecture	#5

Laptops,	Revisted

9/13/16 Fall	2016	- Lecture	#5 36

37

http://financialaid.berkeley.edu/cost-attendance

Last	Five	Minutes,	Please!

9/13/16 Fall	2016	- Lecture	#5 38

Red	Letter	Day
• Medical	Tricoder
• Handheld	Communicator
• Phaser
• Anti-matter	Engines
• Transporter
• Speech	Recognition
• Universal	Translator
• Cloaking	Device
• Force	Field
https://www.youtube.com/
watch?v=b0cDhFVpol8

399/13/16 Fall	2016	- Lecture	#5

40

Break!

9/13/16 Fall	2016	- Lecture	#5 41

Outline

• Assembly	Language
• MIPS	Architecture
• Registers	vs.	Variables
• MIPS	Instructions
• C-to-MIPS	Patterns
• And	in	Conclusion	…

9/13/16 Fall	2016	- Lecture	#5 42

MIPS	Logical	Instructions

Logical
operations

C
operators

Java
operators

MIPS
instructions

Bit-by-bit AND & & and
Bit-by-bit OR | | or
Bit-by-bit NOT ~ ~ not
Shift left << << sll
Shift right >> >> srl

• Useful	to	operate	on	fields	of	bits	within	a	word	
− e.g.,	characters	within	a	word	(8	bits)

• Operations	to	pack	/unpack	bits	into	words
• Called	logical	operations

9/13/16 Fall	2016	- Lecture	#5 43

Logic Shifting
• Shift	Left:	sll $s1,$s2,2 #s1=s2<<2

– Store	in	$s1 the	value	from	$s2 shifted	2	bits	to	the	left	
(they	fall	off	end),	inserting	0’s on	right;	<<	in	C

Before:		0000	0002hex
0000	0000	0000	0000	0000	0000	0000	0010two
After:	 0000	0008hex
0000	0000	0000	0000	0000	0000	0000	1000two

What	arithmetic	effect	does	shift	left	have?

• Shift	Right:	srl is	opposite	shift;	>>

9/13/16 Fall	2016	- Lecture	#5 44

Arithmetic	Shifting
• Shift	right	arithmetic	moves	n bits	to	the	right	
(insert	high	order	sign	bit	into	empty	bits)

• For	example,	if	register	$s0	contained
1111	1111	1111	1111	1111	1111	1110	0111two=	-25ten

• If	executed	sra $s0,	$s0,	4,	result	is:
1111	1111	1111	1111	1111	1111	1111	1110two=	-2ten

• Unfortunately,	this	is	NOT	same	as	dividing	by	2n
− Fails	for	odd	negative	numbers
− C	arithmetic	semantics	is	that	division	should	round	towards	0

9/13/16 Fall	2016	- Lecture	#5 45

Computer	Decision	Making
• Based	on	computation,	do	something	different
• In	programming	languages:	if-statement

• MIPS:	if-statement	instruction	is
beq register1,register2,L1

means:	go	to	statement	labeled	L1	
if	(value	in	register1)	==	(value	in	register2)
….otherwise,	go	to	next	statement

• beq stands	for	branch	if	equal
• Other	instruction:	bne for	branch	if	not	equal

9/13/16 Fall	2016	- Lecture	#5 46

Types	of	Branches

• Branch – change	of	control	flow

• Conditional	Branch – change	control	flow	
depending	on	outcome	of	comparison
– branch	if	equal	(beq)	or	branch	if	not equal	(bne)

• Unconditional	Branch – always	branch
– a	MIPS	instruction	for	this:	jump	(j)

9/13/16 Fall	2016	- Lecture	#5 47

Example	if Statement

• Assuming	translations	below,	compile	if block
f →	$s0 g →	$s1 h →	$s2
i →	$s3 j →	$s4

if (i == j) bne $s3,$s4,Exit

f = g + h; add $s0,$s1,$s2

Exit:

• May	need	to	negate	branch	condition
9/13/16 Fall	2016	- Lecture	#5 48

Example	if-else Statement

• Assuming	translations	below,	compile
f →	$s0 g →	$s1 h →	$s2
i →	$s3 j →	$s4

if (i == j) bne $s3,$s4,Else

f = g + h; add $s0,$s1,$s2

else j Exit

f = g – h; Else: sub $s0,$s1,$s2

Exit:
9/13/16 Fall	2016	- Lecture	#5 49

Inequalities in MIPS
• Until	now,	we’ve	only	tested	equalities	
(==	and	!=	in	C);		
General	programs	need	to	test	<	and	>	as	well.

• Introduce	MIPS	Inequality	Instruction:
“Set	on	Less	Than”
Syntax:									slt reg1,reg2,reg3
Meaning: if	(reg2	<	reg3)	

reg1	=	1;	
else	reg1	=	0;	

“set”	means	“change	to	1”,	
“reset”	means	“change	to	0”.

9/13/16 Fall	2016	- Lecture	#5 50

Inequalities in MIPS (cont)
• How	do	we	use	this?	Compile	by	hand:

if	(g	<	h)	goto Less; #g:$s0,	h:$s1

• Answer:	compiled	MIPS	code…
#	$t0	=	1	if g<h
#	if	$t0!=0	goto Less

• Register	$zero always	contains	the	value	0,	so	bne and	beq
often	use	it	for	comparison	after	an	slt instruction

• sltu treats	registers	as	unsigned

9/13/16 Fall	2016	- Lecture	#5 51

Inequalities in MIPS (cont)
• How	do	we	use	this?	Compile	by	hand:

if	(g	<	h)	goto Less; #g:$s0,	h:$s1

• Answer:	compiled	MIPS	code…
slt $t0,$s0,$s1 #	$t0	=	1	if g<h
bne $t0,$zero,Less #	if	$t0!=0	goto Less

• Register	$zero always	contains	the	value	0,	so	bne and	beq
often	use	it	for	comparison	after	an	slt instruction

• sltu treats	registers	as	unsigned

9/13/16 Fall	2016	- Lecture	#5 52

Immediates in Inequalities
• slti an immediate version of slt to

test against constants

Loop: . . .

slti $t0,$s0,1 # $t0 = 1 if
$s0<1

beq $t0,$zero,Loop # goto Loop
if $t0==0
(if ($s0>=1))

9/13/16 Fall	2016	- Lecture	#5 53

Loops in C/Assembly
• Simple	loop	in	C;						A[] is	an	array	of	ints

do { g = g + A[i];
i = i + j;

} while (i != h);
• Use	this	mapping: g,		 h,			i,			j,	&A[0]

$s1,	$s2,	$s3,	$s4,	$s5

Loop: # $t1= 4*i
$t1=addr A+4i
$t1=A[i]
g=g+A[i]

i=i+j
goto Loop

if i!=h
9/13/16 Fall	2016	- Lecture	#5 54

55

And	In	Conclusion	…
• Computer	words	and	vocabulary	are	called	instructions	
and	instruction	set	respectively

• MIPS	is	an	example	RISC	instruction	set
• Rigid	format:	one	operation,	two	source	operands,	one	
destination
– add,sub,mul,div,and,or,sll,srl,sra
– lw,sw,lb,sb to	move	data	to/from	registers	from/to	
memory

– beq, bne, j, slt, slti for	decision/flow	control
• Simple	mappings	from	arithmetic	expressions,	array	
access,	if-then-else	in	C	to	MIPS	instructions

9/13/16 Fall	2016	- Lecture	#5 56

