

UC Berkeley
Teaching Professor Dan Garcia

Great Ideas in
Computer Architecture
(a.k.a. Machine Structures)

UC Berkeley
Professor
Bora Nikolić

Combinational Logic

Truth Tables

Gic
 Truth Tables

BY NC SA
[ixil ITExample \#2: 2-bit adder

Gis) TI Example \#3: 32-bit unsigned adder

A	B	C	
$000 \ldots 0$	$000 \ldots 0$	$000 \ldots 00$	
$000 \ldots 0$	$000 \ldots$	$000 \ldots 01$	How
.	\cdot	\cdot	Many
.	.	.	Rows?
$111 \ldots 1$	$111 \ldots 1$	$111 \ldots 10$	

a	b	c	y
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Logic Gates

Garcia, Nikolić
@(Q)(

and vs. or ... how to recall which is which

and gate symbol

a	b	y
0	0	0
0	1	0
1	0	0
1	1	1

- N-input XOR is the only one which isn't so obvious
- It's actually simple...

a	b	c	y
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

gicl Tuth Table \rightarrow Gates (e.g., majority circ.)

a	b	c	y
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Gid) Truth Table \rightarrow Gates (e.g., FSM circuit)

PS	Input	NS	Output
00	0	00	0
00	1	01	0
01	0	00	0
01	1	10	0
10	0	00	0
10	1	00	1

or equivalently...

Boolean Algebra

Boolean Algebra

- George Boole, 19th Century mathematician
- Developed a mathematical system (algebra) involving logic
- later known as "Boolean Algebra"
- Primitive functions: AND, OR and NOT
- Power of Boolean Algebra
- there's a one-to-one correspondence between circuits made up of AND, OR and NOT gates and equations in BA
- + means OR,• means AND, \bar{x} means NOT

gic) Boolean Algebra (e.g., for majority fun.)

Gol Boolean Algebra (e.g., for FSM)

PS	INPUT	NS	OUTPUT
00	0	00	0
00	1	01	0
01	0	00	0
01	1	10	0
10	0	00	0
10	1	00	1

or equivalently...

OUTPUT $=$ PS $_{1} \bullet$ PS $_{0} \bullet$ INPUT

BA: Circuit \& Algebraic Simplification

Laws of Boolean Algebra

CS 61 C
 Laws of Boolean Algebra

$$
\begin{gathered}
x \cdot \bar{x}=0 \\
x \cdot 0=0 \\
x \cdot 1=x \\
x \cdot x=x \\
x \cdot y=y \cdot x \\
(x y) z=x(y z) \\
x(y+z)=x y+x z \\
x y+x=x \\
\overline{x \cdot y}=\bar{x}+\bar{y}
\end{gathered}
$$

$$
\begin{gathered}
x+\bar{x}=1 \\
x+1=1 \\
x+0=x \\
x+x=x \\
x+y=y+x \\
(x+y)+z=x+(y+z) \\
x+y z=(x+y)(x+z) \\
\frac{(x+y) x=x}{(x+y)}=\bar{x} \cdot \bar{y}
\end{gathered}
$$

complementarity
laws of 0's and 1's
identities idempotent law communitive law
associativity distribution uniting theorem DeMorgan's Law

$$
\begin{aligned}
y & =a b+a+c & & \\
& =a(b+1)+c & & \text { distribution, identity } \\
& =a(1)+c & & \text { law of l's } \\
& =a+c & & \text { identity }
\end{aligned}
$$

Canonical Forms

Canonical forms (1/2)

Canonical forms (2/2)

$$
\begin{aligned}
y & =\bar{a} \bar{b} \bar{c}+\bar{a} \bar{b} c+a \bar{b} \bar{c}+a b \bar{c} & & \\
& =\bar{a} \bar{b}(\bar{c}+c)+a \bar{c}(\bar{b}+b) & & \text { distribution } \\
& =\bar{a} \bar{b}(1)+a \bar{c}(1) & & \text { complementarity } \\
& =\bar{a} \bar{b}+a \bar{c} & & \text { identity }
\end{aligned}
$$

- Pipeline big-delay CL for faster clock
- Finite State Machines extremely useful
- You'll see them again in (at least) 151A, 152 \& 164
- Use this table and techniques we leamed to transform from 1 to another

