

UC Berkeley Teaching Professor Dan Garcia

Great Ideas in Computer Architecture (a.k.a. Machine Structures)

S6

Combinational Logic

cs61c.org

UC Berkeley Professor Bora Nikolić

Truth Tables

Combinational Logic (3)

d	У
0	F(0,0,0,0)
1	F(0,0,0,1)
0	F(0,0,1,0)
1	F(0,0,1,1)
0	F(0,1,0,0)
1	F(0,1,0,1)
0	F(0,1,1,0)
1	F(0,1,1,1)
0	F(1,0,0,0)
1	F(1,0,0,1)
0	F(1,0,1,0)
1	F(1,0,1,1)
0	F(1,1,0,0)
1	F(1,1,0,1)
0	F(1,1,1,0)
1	F(1,1,1,1)

TT Example #1: 1 iff one (not both) a,b=1

Combinational Logic (4)

TT Example #2: 2-bit adder

A

2

B

2

3

А	В	C
a_1a_0	b_1b_0	$c_2 c_1 c_0$
00	00	000
00	01	001
00	10	010
00	11	011
01	00	001
01	01	010
01	10	011
01	11	100
10	00	010
10	01	011
10	10	100
10	11	101
11	00	011
11	01	100
11	10	101
11	11	110

Combinational Logic (5)

How Many **Rows?**

Combinational Logic (6)

How Many **Rows?**

TT Example #4: 3-input majority circuit

а	b	С	у
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Combinational Logic (7)

 \checkmark Garcia, Nikolić \$0 CC NC SA

BY

Combinational Logic (9)

ab	C
00	0
01	0
10	0
11	1
ab	C
00	0
01	1
10	1
11	1

a	b
0	1
1	0

Combinational Logic (10)

Combinational Logic (11)

)	C
)	0
	1
)	1
	0
)	C
)	1
	1
)	1
	0
)	C
)	1
[0
)	0
	0

	а	b	С	у
N-input XOR is the	0	0	0	0
only one which isn't	0	0	1	1
so obvious		1	0	1
		1	1	0
It's actually simple	1	0	0	1
XOR is a 1 iff the # of	1	0	1	0
1s at its input is odd	1	1	0	0
	1	1	1	1

Truth Table \rightarrow Gates (e.g., majority circ.)

Combinational Logic (13)

Truth Table \rightarrow Gates (e.g., FSM circuit)

PS	Input	NS	Output
00	0	00	0
00	1	01	0
01	0	00	0
01	1	10	0
10	0	00	0
10	1	00	1

or equivalently...

Combinational Logic (14)

Boolean Algebra

Boolean Algebra

- George Boole, 19th Century mathematician
- **Developed a mathematical** system (algebra) involving logic
 - later known as "Boolean Algebra"
- Primitive functions: AND, OR and NOT
- **Power of Boolean Algebra**
 - there's a one-to-one correspondence between circuits made up of AND, OR and NOT gates and equations in BA
- + means OR, means AND, x means NOT

Combinational Logic (16)

Boolean Algebra (e.g., for majority fun.)

$y = a \cdot b + a \cdot c + b \cdot c$ y = ab + ac + bc

Combinational Logic (17)

Boolean Algebra (e.g., for FSM)

PS	INPUT	NS	OUTPUT
00	0	00	0
00	1	01	0
01	0	00	0
01	1	10	0
10	0	00	0
10	1	00	1

or equivalently...

$OUTPUT = PS_1 \cdot PS_0 \cdot INPUT$

Combinational Logic (18)

BA: Circuit & Algebraic Simplification

Combinational Logic (19)

equation derived from original circuit

BA also great for circuit verification Circ X = Circ Y? Use BA to prove!

LOWS Of Boolean Algebra

Laws of Boolean Algebra

$x + \overline{x} = 1$	
x + 1 = 1	
x + 0 = x	
x + x = x	
x + y = y + x	
(x+y) + z = x + (y+z)	
x + yz = (x + y)(x + z)	
(x+y)x = x	
$\overline{(x+y)} = \overline{x} \cdot \overline{y}$	
	x + 1 = 1 $x + 0 = x$ $x + x = x$ $x + y = y + x$ $(x + y) + z = x + (y + z)$ $x + yz = (x + y)(x + z)$ $(x + y)x = x$

Combinational Logic (21)

complementarity laws of 0's and 1's identities idempotent law () communitive law associativity distribution uniting theorem DeMorgan's Law

Boolean Algebraic Simplification Example

$$y = ab + a + c$$

= $a(b+1) + c$ distributio
= $a(1) + c$ law of 1's
= $a + c$ identity

Combinational Logic (22)

Canonical Forms

Canonical forms (1/2)

Sum-of-products (ORs of ANDs)

$$y = \overline{a}\overline{b}\overline{c} + \overline{a}\overline{b}c$$

Combinational Logic (24)

$+ a\overline{b}\overline{c} + ab\overline{c}$

Canonical forms (2/2)

$$y = \overline{a}\overline{b}\overline{c} + \overline{a}\overline{b}c + a\overline{b}\overline{c} + ab\overline{c}$$

$$= \overline{a}\overline{b}(\overline{c} + c) + a\overline{c}(\overline{b} + b) \quad districtions = \overline{a}\overline{b}(1) + a\overline{c}(1) \quad comp$$

$$= \overline{a}\overline{b} + a\overline{c} \quad identify$$

Combinational Logic (25)

lementarity

"And In conclusion..."

- Pipeline big-delay CL for faster clock Finite State Machines extremely useful You'll see them again in (at least) 151A, 152 & 164
- Use this table and techniques we learned to transform from 1 to another

Combinational Logic (26)

