UC Berkeley
Teaching Professor Dan Garcia

Great Ideas in
 Computer Architecture

UC Berkeley
Professor
Bora Nikolić

Combinational Logic Blocks

Data

Multiplexors

Berkeley

Gid N instances of 1-bit wide mux

How many rows in TT?
$c=\bar{s} a \bar{b}+\bar{s} a b+s \bar{a} b+s a b$
$=\bar{s}(a \bar{b}+a b)+s(\bar{a} b+a b)$
$=\bar{s}(a(\bar{b}+b))+s((\bar{a}+a) b)$
$=\bar{s}(a(1)+s((1) b)$

s		c		
0	1	00	0	
0	a	1	10	0
1	b		1	11

Berkeley

s	ab	c
0	00	0
0	01	0
0	10	1
0	11	1
1	00	0
1	01	1
1	10	0
1	11	1

$$
\bar{s} a+s b
$$

ditil: 4-to-1Muliplexor?

- How many rows in the Truth Table?

@(®®
BY NC SA

Hint; NCAA toumey!

Ans: Hierarchically!

Arithmetic Logic Unit (ALU)

Arithmetic and Logic Unit

- Most processors contain a special logic block called "Arithmetic and Logic Unit" (ALU)
- We'll show you an easy one that does ADD, SUB, bitwise AND (ε), bitwise OR (।)

when $\mathrm{S}=00, \mathrm{R}=\mathrm{A}+\mathrm{B}$ when $\mathrm{S}=01, \mathrm{R}=\mathrm{A}-\mathrm{B}$ when $S=10, R=A \& B$ when $\mathrm{S}=11, \mathrm{R}=\mathrm{A} \mid \mathrm{B}$

V

$$
\begin{aligned}
& \text { Adder / } \\
& \text { Subtractor }
\end{aligned}
$$

Adder / Subtracter Design - how?

- Truth-table, then - Look at breaking determine canonical form, then minimize and implement as we've seen before the problem down into smaller pieces that we can cascade or hierarchically layer

gis) Adder / Subtractor - One-bit adder LSB...

$+$| a_{3} | a_{2} | a_{1} | a_{0} |
| :---: | :---: | :---: | :---: |
| b_{3} | b_{2} | b_{1} | b_{0} |
| $\mathrm{~s}_{3}$ | $\mathrm{~s}_{2}$ | $\mathrm{~s}_{1}$ | $\mathrm{~s}_{0}$ |\quad| a_{0} | $\mathrm{~b}_{0}$ | $\mathrm{~s}_{0}$ | c_{1} |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 |
| 0 | 1 | 1 | 0 |
| 1 | 0 | 1 | 0 |
| 1 | 1 | 0 | 1 |

$$
\begin{aligned}
s_{0} & =a_{0} \text { XOR } b_{0} \\
c_{1} & =a_{0} \text { AND } b_{0}
\end{aligned}
$$

Esid Adder / Subtractor - One-bit adder (1/2)...

$$
\begin{aligned}
& +\begin{array}{cc|c|c}
a_{3} & a_{2} & a_{1} & a_{0} \\
b_{3} & b_{2} & b_{1} & b_{0} \\
\hline \mathrm{~s}_{3} & \mathrm{~s}_{2} & \mathrm{~s}_{1} & \mathrm{~s}_{0}
\end{array} \\
& s_{i}=\operatorname{XOR}\left(a_{i}, b_{i}, c_{i}\right) \\
& c_{i+1}=\operatorname{MAJ}\left(a_{i}, b_{i}, c_{i}\right)=a_{i} b_{i}+a_{i} c_{i}+b_{i} c_{i}
\end{aligned}
$$

gid Adder / Subtractor - One-bit adder (2/2)...

What about overfiow? Overflow = c_{n} ?

Sum of two 2-bit numbers...

Subtractor Design

Extremely Clever Subtractor: A-B = A + (-B)

- Use muxes to select among input
- S input bits selects 2^{s} inputs
- Each input can be n-bits wide, indep of S
- Can implement muxes hierarchically
- ALU can be implemented using a mux
- Coupled with basic block elements
- N-bit adder-subtractor done using N 1 bit adders with XOR gates on input
- XOR serves as conditional inverter

