

UC Berkeley Teaching Professor Dan Garcia

Great Ideas in Computer Architecture (a.k.a. Machine Structures)

56

Datacenters & Cloud Computing

cs61c.org

UC Berkeley Professor Bora Nikolić

Erols of Computer Hardware

Great Ideas in Computer Architecture

- Layers of Representation/Interpretation
- Moore's Law
- Principle of Locality/Memory Hierarchy
 - Parallelism
 - Performance Measurement and Improvement
 - Dependability via Redundancy

Computer Eras: Mainframe 1950s-60s

"Big Iron": IBM, UNIVAC, ... build \$1M computers for businesses \rightarrow COBOL, Fortran, timesharing OS

Datacenters & Cloud Computing (4)

Minicomputer Eras: 1970s

Using integrated circuits, Digital, HP... build \$10k computers for labs, universities \rightarrow C, UNIX OS

Datacenters & Cloud Computing (5)

PC Era: Mid 1980s - Mid 2000s

Using microprocessors, Apple, IBM, … build \$1k computer for 1 person → Basic, Java, Windows OS

Datacenters & Cloud Computing (6)

PostPC Era: Late 2000s - ??

Personal Mobile Devices (PMD): Relying on wireless networking, Apple, Nokia, ... build \$500 smartphone and tablet computers for individuals

→ Objective C, Swift, Java, Android OS + iOS

Cloud Computing:

Using Local Area Networks, Amazon, Google, ... build \$200M Warehouse Scale Computers with 100,000 servers for Internet Services for PMDs

→ MapReduce, Ruby on Rails

Datacenters & Cloud Computing (7)

 \checkmark

Warehouse Scole Computers

Why Cloud Computing Now?

- "The Web Space Race": Build-out of extremely large datacenters (10,000's of commodity PCs)
 - Build-out driven by growth in demand (more users)
 - Infrastructure software and Operational expertise
- Discovered economy of scale: 5-7x cheaper than provisioning a medium-sized (1000 servers) facility
- More pervasive broadband Internet so can access remote computers efficiently
- Commoditization of HW & SW
 - Standardized software stacks

Instance	Per Hour	\$ Ratio to Small	<u>E</u> C2 <u>C</u> ompute <u>U</u> nit (integer)	Virtual Cores (vCPU)
Standard Small (t3.small)	\$0.021	1	Variable	2
Standard Large (t3.large)	\$0.083	4	Variable	2
Standard 2x Extra Large (t3.2xlarge)	\$0.333	16	Variable	8
High-Mem Large (r5.large)	\$0.126	6	10	2
High-Mem Double Xlarge (r5.2xlarge)	\$0.504	24	37	8
High-Mem 24x Large (r5.24xlarge)	\$6.048	288	337	96
High-CPU Large (c5.large)	\$0.085	4	10	2
High-CPU 18x Large (c5.18xlarge)	\$3.060	146	281	72

- Closest computer in WSC example is Standard 2X Extra Large
- At these low rates, Amazon EC2 can make money! (even utilized 50% time)
- EBS = Elastic Block Store (SSD=\$0.10/GB-month, HDD=\$0.045/GB-month)
- Each also comes with dedicated attached SSD if you choose & pay for that

Datacenters & Cloud Computing (10)

aws.amazon.com/ec2/pricing/on-demand

Memory (GiB)	Disk (GiB)	
2	EBS	
8	EBS	
32	EBS	
16	EBS	
64	EBS	
768	EBS	
4	EBS	
144	EBS	

Garcia, Nikolić

Warehouse Scale Computers

- Massive scale datacenters: 10,000 to 100,000 servers + networks to connect them together
 - Emphasize cost-efficiency
 - Attention to power: distribution and cooling
- (relatively) homogeneous hardware/software
- Offer very large applications (Internet services): search, social networking, video sharing
- Very highly available: < 1 hour down/year Must cope with failures common at scale
- "...WSCs are no less worthy of the expertise of computer systems architects than any other class of machines"

- Barroso and Hoelzle 2009

Design Goals of a WSC

Unique to Warehouse-scale

- Ample parallelism:
 - Batch apps: large number independent data sets with independent processing.
 - Also known as Data-Level Parallelism
- Scale and its Opportunities/Problems
 - Relatively small number of these make design cost expensive and difficult to amortize
 - But price breaks are possible from purchases of very large numbers of commodity servers
 - Must also prepare for high # of component failures
- Operational Costs Count:
 - Cost of equipment purchases << cost of ownership

Datacenters & Cloud Computing (13)

Containers in WSCs

Inside WSC Inside Container

Datacenters & Cloud Computing (14)

Equipment Inside a WSC

Server (in rack format): 1 ³/₄ inches high "1U", x 19 inches x 16-20 inches: 8 cores, 16 GB DRAM, 4x1 TB disk

7 foot Rack: 40-80 servers + Ethernet local area network (1-10 Gbps) switch in middle ("rack switch")

Array (aka cluster): 16-32 server racks + larger local area network switch ("array switch") 10X faster → cost 100X: cost f(N²)

Datacenters & Cloud Computing (15)

Server, Rack, Array

Datacenters & Cloud Computing (16)

Google Server Internals

Datacenters & Cloud Computing (17)

Google Server Internals

Datacenters & Cloud Computing (18)

Defining Performance

What does it mean to say X is faster than Y?

- 2009 Ferrari 599 GTB
 - 2 passengers, 11.1 secs for quarter mile (call it 10sec)
- 2009 Type D school bus
 - 54 passengers, quarter mile time? (let's guess 1 min)
- **Response Time or Latency**
 - time between start and completion of a task
 - E.g., time to move vehicle $\frac{1}{4}$ mile
- Throughput or Bandwidth
 - total amount of work in a given time
 - E.g., passenger-miles in 1 hour

Datacenters & Cloud Computing (19)

Coping with Performance in Array

Lower latency to DRAM in another server than local disk Higher bandwidth to local disk than to DRAM in another server

	Local	Rack	Array
Racks		1	30
Servers	1	80	2400
Cores (Processors)	8	640	19,200
DRAM Capacity (GB)	16	1,280	38,400
Disk Capacity (TB)	4	320	9,600
DRAM Latency (microseconds)	0.1	100	300
Disk Latency (microseconds)	10,000	11,000	12,000
DRAM Bandwidth (MB/sec)	20,000	100	10
Disk Bandwidth (MB/sec)	200	100	10

Datacenters & Cloud Computing (20)

Power Usage Effectiveness (PUE)

Coping with Workload Variation

Online service: Peak usage 2X off-peak

Datacenters & Cloud Computing (22)

Midnight

- WSC Software must take care where it places data within an array to get good performance
- WSC Software must cope with failures gracefully
- WSC Software must scale up and down gracefully in response to varying demand
- More elaborate hierarchy of memories, failure tolerance, workload accommodation makes WSC software development more challenging than software for single computer

Power vs. Server Utilization

- Server power usage as load varies idle to 100%
- Uses ¹/₂ peak power when idle!
- Uses ²/₃ peak power when 10% utilized! 90%@ 50%!
- Most servers in WSC utilized 10% to 50%
- Goal should be Energy-Proportionality: % peak load = % peak energy

Datacenters & Cloud Computing (24)

Power Usage Effectiveness

- **Overall WSC Energy Efficiency: amount of** computational work performed divided by the total energy used in the process
- **Power Usage Effectiveness (PUE):** Total building power / IT equipment power
 - A power efficiency measure for WSC, not including efficiency of servers, networking gear
 - \sim 1.0 = perfection

PUE in the Wild (2007)

FIGURE 5.1: LBNL survey of the power usage efficiency of 24 datacenters, 2007 (Greenberg et al.)

Datacenters & Cloud Computing (26)

Datacenters & Cloud Computing (27)

Chiller cools warm water from Air Conditioner

Computer Room Air Conditioner

Google WSC A PUE: 1.24

Careful air flow handling

- Don't mix server hot air exhaust with cold air (separate warm aisle from cold aisle)
- Short path to cooling so little energy spent moving cold or hot air long distances
- Keeping servers inside containers helps control air flow

Elevated cold aisle temperatures

- 81° F instead of traditional 65° 68° F
- Found reliability OK if run servers hotter

Use of free cooling

- Cool warm water outside by evaporation in cooling towers
- Locate WSC in moderate climate so not too hot or too cold

Per-server 12-V DC UPS

- Rather than WSC wide UPS, place single battery per server board
- Increases WSC efficiency from 90% to 99%
- Measure vs. estimate PUE, publish PUE, and improve operation

- 2011 www.nytimes.com/2011/09/09/technology/google-details-and-defends-its-use-of-electricity.html
 - Google disclosed that it continuously uses enough electricity to power 200,000 homes, but it says that in doing so, it also makes the planet greener.
 - Search cost per day (per person) same as running a 60-watt bulb for 3 hours
- 2018 techcrunch.com/2018/04/04/google-matches-100-percent-of-its-power-consumption-with-renewables/
 - Google: "Over the course of 2017, across the globe, for every kilowatt-hour of electricity we consumed, we purchased a kilowatt-hour of renewable energy from a wind or solar farm that was built specifically for Google. This makes us the first public Cloud, and company of our size, to have achieved this feat"

Urs Hölzle, Google SVP Co-author of today's reading

Computing in the News

Google* Amazon Microsoft Apple **US Department of Defense** Facebook Wal-Mart Stores Dow Chemical Equinix Ikea Group Kaiser Permanente Mars Inc **US General Services Administration** Switch SuperNAP Procter & Gamble 0MW 500 1000 1500 2000 Solar **Biomass & Waste** Small Hydro Wind

Cumulative Corporate Renewable Energy Purchased in the United States, Europe, and Mexico - March 2018

Source: Bloomberg New Energy Finance

*Google total also includes one 80 MW project in Chile

Datacenters & Cloud Computing (30)

Urs Hölzle, Google SVP Co-author of today's reading

 	<u>1</u>
	- 7-
2500	300
	000

Summary

Parallelism is one of the Great Ideas

- Applies at many levels of the system from instructions to warehouse scale computers
- Post PC Era: Parallel processing, smart phone to WSC
- WSC SW must cope with failures, varying load, varying HW latency bandwidth
- WSC HW sensitive to cost, energy efficiency
- WSCs support many of the applications we have come to depend on

