
CS 61C Number Representation
Fall 2022 Discussion 1

1 Pre-Check
This section is designed as a conceptual check for you to determine if you conceptually

understand and have any misconceptions about this topic. Please answer true/false

to the following questions, and if false, correct the statement to make it true:

1.1 Depending on the context, the same sequence of bits may represent different things.

1.2 It is possible to get an overflow error in Two’s Complement when adding numbers

of opposite signs.

1.3 If you interpret a N bit Two’s complement number as an unsigned number, negative

numbers would be smaller than positive numbers.

1.4 If you interpret an N bit Bias notation number as an unsigned number (assume

there are negative numbers for the given bias), negative numbers would be smaller

than positive numbers.

1.5 We can represent fractions and decimals in our given number representation formats

(unsigned, biased, and Two’s Complement).

2 Unsigned Integers
2.1 If we have an n-digit unsigned numeral dn−1dn−2 . . . d0 in radix (or base) r, then

the value of that numeral is
∑n−1

i=0 ridi, which is just fancy notation to say that

instead of a 10’s or 100’s place we have an r’s or r2’s place. For the three radices

binary, decimal, and hex, we just let r be 2, 10, and 16, respectively.

Let’s try this by hand.

(a) Convert the following numbers from their initial radix into the other two

common radices:

1. 0b10010011

2. 63

3. 0b00100100

4. 0

5. 39



2 Number Representation

6. 437

7. 0x0123

(b) Convert the following numbers from hex to binary:

1. 0xD3AD

2. 0xB33F

3. 0x7EC4

2.2 Our preferred tool for writing large numbers is the IEC prefixing system, which is

similar to scientific notation but with powers of 2 rather than 10:

Ki (Kibi) = 210

Mi (Mebi) = 220

Gi (Gibi) = 230

Ti (Tebi) = 240

Pi (Pebi) = 250

Ei (Exbi) = 260

Zi (Zebi) = 270

Yi (Yobi) = 280

For example, we would write 281 as 2 ∗ 280 = 2 Yi.

(a) Write the following numbers using IEC prefixes:

• 216

• 234

• 227

• 261

• 243

• 247

• 236

• 259

(b) Write the following numbers as powers of 2:

• 2 Ki

• 256 Pi

• 512 Ki

• 64 Gi

• 16 Mi

• 128 Ei

3 Signed Integers
3.1 Unsigned binary numbers work for natural numbers, but many calculations use

negative numbers as well. To deal with this, a number of different schemes have

been used to represent signed numbers. Here are two common schemes:

Two’s Complement:

• We can write the value of an n-digit two’s complement number as
∑n−2

i=0 2idi −
2n−1dn−1.

• Negative numbers will have a 1 as their most significant bit (MSB). Plugging

in dn−1 = 1 to the formula above gets us
∑n−2

i=0 2idi − 2n−1.

• Meanwhile, positive numbers will have a 0 as their MSB. Plugging in dn−1 = 0

gets us
∑n−2

i=0 2idi, which is very similar to unsigned numbers.

• To negate a two’s complement number: flip all the bits and add 1.

• Addition is exactly the same as with an unsigned number.

• Only one 0, and it’s located at 0b0.



Number Representation 3

Biased Representation:

• The number line is shifted so that the smallest number we want to be repre-

sentable would be 0b0...0.

• To find out what the represented number is, read the representation as if it was

an unsigned number, then add the bias.

• We can shift to any arbitrary bias we want to suit our needs. To represent

(nearly) as much negative numbers as positive, a commonly-used bias for N

bits is –(2N−1 − 1).

For questions (a) through (c), assume an 8-bit integer and answer each one for the

case of an unsigned number, biased number with a bias of -127, and two’s complement

number. Indicate if it cannot be answered with a specific representation.

(a) What is the largest integer? What is the result of adding one to that number?

1. Unsigned?

2. Biased?

3. Two’s Complement?

(b) How would you represent the numbers 0, 1, and -1?

1. Unsigned?

2. Biased?

3. Two’s Complement?

(c) How would you represent 17 and -17?

1. Unsigned?

2. Biased?

3. Two’s Complement?

3.2 Prove that the two’s complement inversion trick is valid (i.e. that x and x+ 1 sum

to 0).



4 Number Representation

3.3 We now have three major radices (or bases) that allow us to represent numbers

using a finite amount of symbols: binary, decimal, hexadecimal. Why do we use

each of these radices, and why are each of them preferred over other bases in a given

context?

4 Arithmetic and Counting
4.1 Addition and subtraction of binary/hex numbers can be done in a similar fashion as

with decimal digits by working right to left and carrying over extra digits to the

next place. However, sometimes this may result in an overflow if the number of bits

can no longer represent the true sum. Overflow occurs if and only if two numbers

with the same sign are added and the result has the opposite sign.

(a) Compute the decimal result of the following arithmetic expressions involving

6-bit Two’s Complement numbers as they would be calculated on a computer.

Do any of these result in an overflow? Are all these operations possible?

1. 0b011001 − 0b000111

2. 0b100011 + 0b111010

3. 0x3B + 0x06

4. 0xFF − 0xAA

5. 0b000100 − 0b001000

(b) What is the least number of bits needed to represent the following ranges using

any number representation scheme?

1. 0 to 256

2. -7 to 56

3. 64 to 127 and -64 to -127

4. Address every byte of a 12 TiB chunk of memory

(c) How many distinct numbers can the following schemes represent? How many

distinct positive numbers?

1. 10-bit unsigned

2. 8-bit Two’s Complement

3. 8-bit One’s Complement

4. 6-bit biased, with a bias of -30

5. 10-bit sign-magnitude


	Pre-Check
	Unsigned Integers
	Signed Integers
	Arithmetic and Counting

