
CS 61C C and Pointers
Fall 2022 Discussion 2

1 Pre-Check
This section is designed as a conceptual check for you to determine if you conceptually

understand and have any misconceptions about this topic. Please answer true/false

to the following questions, and if false, correct the statement to make it true:

1.1 True or False: C is a pass-by-value language.

1.2 The following is correct C syntax:

int num = 43

1.3 In compiled languages, the compile time is generally pretty fast, however the run-

time is significantly slower than interpreted languages.

1.4 The correct way of declaring a character array is char[] array.

1.5 Bitwise and logical operations result in the same behaviour for given bitstrings.

2 Bit-wise Operations
2.1 In C, we have a few bit-wise operators at our disposal:

• AND (&)

• NOT (∼)

• OR (|)

• XOR (∧)

• SHIFT LEFT (<<)

– Example: 0b0001 << 2 = 0b0100

• SHIFT RIGHT (>>)

– Example: 0b0100 >> 2 = 0b0001



2 C and Pointers

a b a & b a | b a ∧ b ∼a

0 0 0 0 0 1

0 1 0 1 1 1

1 0 0 1 1 0

1 1 1 1 0 0

For your convenience, truth tables for the logical operators are provided above. With

the binary numbers a, b, and c below, perform the following bit-wise operations:

a = 0b1000 1011

b = 0b0011 0101

c = 0b1111 0000

(a) a & b

(b) a ∧ c

(c) a | 0

(d) a | (b >> 5)

(e) ∼ ((b | c) & a)

3 Pass-by-who?
3.1 Implement the following functions so that they work as described.

(a) Swap the value of two ints. Remain swapped after returning from this function.

Hint: Our answer is around three lines long.

void swap(________________, ________________) {

(b) Return the number of bytes in a string. Do not use strlen.

Hint: Our answer is around 4 lines long.

int mystrlen(________________) {



C and Pointers 3

4 Debugging
4.1 The following functions may contain logic or syntax errors. Find and correct them.

(a) Returns the sum of all the elements in summands.

1 int sum(int *summands) {

2 int sum = 0;

3 for (int i = 0; i < sizeof(summands); i++)

4 sum += *(summands + i);

5 return sum;

6 }

(b) Increments all of the letters in the string which is stored at the front of an

array of arbitrary length, n >= strlen(string). Does not modify any other

parts of the array’s memory.

1 void increment(char *string, int n) {

2 for (int i = 0; i < n; i++)

3 *(string + i)++;

4 }

(c) Copies the string src to dst.

1 void copy(char *src, char *dst) {

2 while (*dst++ = *src++);

3 }

(d) Overwrites an input string src with “61C is awesome!” if there’s room. Does

nothing if there is not. Assume that length correctly represents the length of

src.

1 void cs61c(char *src, size_t length) {

2 char *srcptr, replaceptr;

3 char replacement[16] = "61C is awesome!";

4 srcptr = src;

5 replaceptr = replacement;

6 if (length >= 16) {

7 for (int i = 0; i < 16; i++)

8 *srcptr++ = *replaceptr++;

9 }

10 }


	Pre-Check
	Bit-wise Operations
	Pass-by-who?
	Debugging

