CS 61C C and Pointers
FaH 2022 Discussion 2

1 Pre—Check

This section is designed as a conceptual check for you to determine if you conceptually

understand and have any misconceptions about this topic. Please answer true/false

to the following questions, and if false, correct the statement to make it true:

True or False: C is a pass-by-value language.

The following is correct C syntax:
int num = 43

In compiled languages, the compile time is generally pretty fast, however the run-

time is significantly slower than interpreted languages.
The correct way of declaring a character array is char[] array.

Bitwise and logical operations result in the same behaviour for given bitstrings.

2 Bit-wise Operations

In C, we have a few bit-wise operators at our disposal:
e AND (&)
e NOT (~)

e OR ()

XOR (A)

SHIFT LEFT (<<)

— Example: 0b0001 << 2 = 0b0100
e SHIFT RIGHT (>>)
— Example: 0b0100 >> 2 = 0b00o1

2 C and Pointers

a|/bla&b|a|b|aAb]|~a
010 0 0 0 1
0|1 0 1 1 1
110 0 1 1 0
11 1 1 0 0

For your convenience, truth tables for the logical operators are provided above. With

the binary numbers a, b, and ¢ below, perform the following bit-wise operations:

a = 0b1000 1011
b = 0bo011 0101
c = 0b1111 0000
(a) a&b

(b) anc
(c)a| o

(

)
)
)
d) al| (b > 5)

()

3 Pass—]oy—who?

Implement the following functions so that they work as described.

2

((b 1 ¢c)&a)

(a) Swap the value of two ints. Remain swapped after returning from this function.

Hint: Our answer is around three lines long.

void swap(R) {

(b) Return the number of bytes in a string. Do not use strlen.
Hint: Our answer is around 4 lines long.

int mystrlen() {

4

C and Pointers 3

Debugging

The following functions may contain logic or syntax errors. Find and correct them.

(a)

2

Returns the sum of all the elements in summands.

int sum(int *summands) {
int sum = 9;
for (int i = 9; i < sizeof(summands); it++)
sum += x(summands + i);

return sum;

Increments all of the letters in the string which is stored at the front of an
array of arbitrary length, n >= strlen(string). Does not modify any other

parts of the array’s memory.

void increment(char *string, int n) {
for (int i = @; i < n; i++)

*(string + 1)++;

Copies the string src to dst.

void copy(char *src, char *dst) {
while (*dst++ = *src++);

Overwrites an input string src with “61C is awesome!” if there’s room. Does
nothing if there is not. Assume that length correctly represents the length of
src.

void cs6lc(char xsrc, size_t length) {
char *srcptr, replaceptr;
char replacement[16] = "61C is awesome!";
srcptr = src;
replaceptr = replacement;
if (length >= 16) {
for (int i = 0; i < 16; i++)

*srcptr++ = *replaceptr++;

	Pre-Check
	Bit-wise Operations
	Pass-by-who?
	Debugging

