
CS 61C Memory and Floating Point
Fall 2022 Discussion 3

1 Pre-Check
This section is designed as a conceptual check for you to determine if you conceptually

understand and have any misconceptions about this topic. Please answer true/false

to the following questions, and include an explanation:

1.1 Memory sectors are defined by the hardware, and cannot be altered.

1.2 For large recursive functions, you should store your data on the heap over the stack.

1.3 True or False. The goals of floating point are to have a large range of values, a low

amount of precision, and real arithmetic results

1.4 True or False. The distance between floating point numbers increases as the absolute

value of the numbers increase.

1.5 True or False. Floating Point addition is associative.

2 Memory Management
C does not automatically handle memory for you. In each program, an address

space is set aside, separated in 2 dynamically changing regions and 2 ’static’ regions.

• The Stack: local variables inside of functions, where data is garbage immedi-

ately after the function in which it was defined returns. Each function call

creates a stack frame with its own arguments and local variables. The stack

dynamically changes, growing downwards as multiple functions are called

within each other (LIFO structure), and collapsing upwards as functions finish

execution and return.

• The Heap: memory manually allocated by the programmer with malloc,

calloc, or realloc. Used for data we want to persist beyond function calls,

growing upwards to ’meet’ the stack. Careful heap management is necessary

to avoid Heisenbugs! Memory is freed only when the programmer explicitly

frees it!

• Static data: global variables declared outside of functions, does not grow or

shrink through function execution.

2 Memory and Floating Point

• Code (or Text): loaded at the start of the program and does not change after,

contains executable instructions and any pre-processor macros.

There are a number of functions in C that can be used to dynamically allocate

memory on the heap. The following are the ones we use in this class:

• malloc(size_t size) allocates a block of size bytes and returns the start of

the block. The time it takes to search for a block is generally not dependent

on size.

• calloc(size_t count, size_t size) allocates a block of count * size bytes,

sets every value in the block to zero, then returns the start of the block.

• realloc(void *ptr, size_t size) ”resizes” a previously-allocated block of

memory to size bytes, returning the start of the resized block.

• free(void *ptr) deallocates a block of memory which starts at ptr that was

previously allocated by the three previous functions.

2.1 For each part, choose one or more of the following memory segments where the data

could be located: code, static, heap, stack.

(a) Static variables

(b) Local variables

(c) Global variables

(d) Constants

(e) Machine Instructions

(f) Result of Dynamic Memory Allocation(malloc or calloc)

(g) String Literals

2.2 Write the code necessary to allocate memory on the heap in the following scenarios

(a) An array arr of k integers

(b) A string str containing p characters

(c) An n×m matrix mat of integers initialized to zero.

2.3 Compare the following two implementations of a function which duplicates a string.

Is either one correct? Which one runs faster?

1 char* strdup1(char* s) {

2 int n = strlen(s);

3 char* new_str = malloc((n + 1) * sizeof(char));

4 for (int i = 0; i < n; i++) new_str[i] = s[i];

5 return new_str;

6 }

Memory and Floating Point 3

7 char* strdup2(char* s) {

8 int n = strlen(s);

9 char* new_str = calloc(n + 1, sizeof(char));

10 for (int i = 0; i < n; i++) new_str[i] = s[i];

11 return new_str;

12 }

2.4 What’s the main issue with the code snippet seen here? (Hint: gets() is a function

that reads in user input and stores it in the array given in the argument.)

1 char* foo() {

2 char buffer[64];

3 gets(buffer);

4

5 char* important_stuff = (char*) malloc(11 * sizeof(char));

6

7 int i;

8 for (i = 0; i < 10; i++) important_stuff[i] = buffer[i];

9 important_stuff[i] = '\0';

10 return important_stuff;

11 }

3 Linked List
Suppose we’ve defined a linked list struct as follows. Assume *lst points to the

first element of the list, or is NULL if the list is empty.

struct ll_node {

int first;

struct ll_node* rest;

}

3.1 Implement prepend, which adds one new value to the front of the linked list. Hint:

why use ll node ∗ ∗ lst instead of ll node∗lst?

void prepend(struct ll_node** lst, int value)

4 Memory and Floating Point

3.2 Implement free_ll, which frees all the memory consumed by the linked list.

void free_ll(struct ll_node** lst)

4 Floating Point
The IEEE 754 standard defines a binary representation for floating point values

using three fields.

• The sign determines the sign of the number (0 for positive, 1 for negative).
• The exponent is in biased notation. For instance, the bias is -127 which

comes from -(28−1 − 1) for single-precision floating point numbers.
• The significand or mantissa is akin to unsigned integers, but used to store a

fraction instead of an integer.

The below table shows the bit breakdown for the single precision (32-bit) represen-

tation. The leftmost bit is the MSB and the rightmost bit is the LSB.

1 8 23

Sign Exponent Mantissa/Significand/Fraction

For normalized floats:

Value = (−1)Sign ∗ 2Exp+Bias ∗ 1.significand2

For denormalized floats:

Value = (−1)Sign ∗ 2Exp+Bias+1 ∗ 0.significand2

Exponent Significand Meaning

0 Anything Denorm

1-254 Anything Normal

255 0 Infinity

255 Nonzero NaN

Note that in the above table, our exponent has values from 0 to 255. When

translating between binary and decimal floating point values, we must remember

that there is a bias for the exponent.

4.1 Convert the following single-precision floating point numbers from binary to decimal

or from decimal to binary. You may leave your answer as an expression.

• 0x00000000

• 8.25

• 0x00000F00

• 39.5625

• 0xFF94BEEF

• -∞

• 1/3

Memory and Floating Point 5

5 More Floating Point Representation
As we saw above, not every number can be represented perfectly using floating point.

For this question, we will only look at positive numbers.

5.1 What is the next smallest number larger than 2 that can be represented completely?

5.2 What is the next smallest number larger than 4 that can be represented completely?

5.3 What is the largest odd number that we can represent? Hint: Try applying the step

size technique covered in lecture.

	Pre-Check
	Memory Management
	Linked List
	Floating Point
	More Floating Point Representation

