
CS 61C RISC-V Assembly, Control
Fall 2022 Discussion 4

1 Pre-Check
This section is designed as a conceptual check for you to determine if you conceptually

understand and have any misconceptions about this topic. Please answer true/false

to the following questions, and include an explanation:

1.1 Let a0 point to the start of an array x. lw s0, 4(a0) will always load x[1] into s0.

False. This only holds for data types that are four bytes wide, like int or float.

For data-types like char that are only one byte wide, 4(a0) is too large of an offset

to return the element at index 1, and will instead return a char further down the

array (or some other data beyond the array, depending on the array length).

1.2 Assuming integers are 4 bytes, adding the ASCII character ’d’ to the address of

an integer array would get you the element at index 25 of that array (assuming the

array is large enough).

True. There is no fundamental difference between integers, strings, and memory

addresses in RISC-V (they’re all bags of bits), so it’s possible to manipulate data in

this way. (We don’t recommend it, though).

1.3 Assuming no compiler or operating system protections, it is possible to have the code

jump to data stored at 0(a0) (offset 0 from the value in register a0) and execute

instructions from there.

True. If your compiler/OS allows it (some do not, for security reasons), it is possible

for your code to jump to and execute instructions passed into the program via an

array. Conversely, it’s also possible for your code to treat itself as normal data

(search up self-modifying code if you want to see more details).

1.4 jalr is a shorthand expression for a jal that jumps to the specified label and does

not store a return address anywhere.

False. j label is a pseudo-instruction for jal x0, label. jalr is used to return

to the memory address specified in the second argument. Keep in mind that jal

jumps to a label (which is translated into an immediate by the assembler), whereas

jalr jumps to an address stored in a register, which is set at runtime.

1.5 Calling j label does the exact same thing as calling jal label.

False. As from the previous problem, j label is short for jal x0, label — since

it’s writing the return address to x0, it’s effectively discarding it since we have no

need to jump back to the original PC. jal label is short for jal ra, label.



2 RISC-V Assembly, Control

2 Instructions
RISC-V is an assembly language, which is comprised of simple instructions that

each do a single task such as addition or storing a chunk of data to memory.

For example, on the left is a snippet of C code and on the right is a chunk of RISC-V

code that accomplishes the same thing.

int x = 5;

y[2];

y[0] = x;

y[1] = x * x;

// x -> s0, &y -> s1

addi s0, x0, 5

sw s0, 0(s1)

mul t0, s0, s0

sw t0, 4(s1)

For your reference, here are some of the basic instructions for arithmetic operations

and dealing with memory (Note: ARG1 is argument register 1, ARG2 is argument

register 2, and DR is destination register):

[inst] [destination register] [argument register 1] [argument register 2]

add Adds the two argument registers and stores in destination register

xor Exclusive or’s the two argument registers and stores in destination register

mul Multiplies the two argument registers and stores in destination register

sll Logical left shifts ARG1 by ARG2 and stores in DR

srl Logical right shifts ARG1 by ARG2 and stores in DR

sra Arithmetic right shifts ARG1 by ARG2 and stores in DR

slt/u If ARG1 < ARG2, stores 1 in DR, otherwise stores 0, u does unsigned comparison

[inst] [register] [offset]([register containing base address])

sw Stores the contents of the register to the address+offset in memory

lw Takes the contents of address+offset in memory and stores in the register

[inst] [argument register 1] [argument register 2] [label]

beq If ARG1 == ARG2, moves to label

bne If ARG1 != ARG2, moves to label

[inst] [destination register] [label]

jal Stores the next instruction’s address into DR and moves to label

You may also see that there is an “i” at the end of certain instructions, such as addi,

slli, etc. This means that ARG2 becomes an “immediate” or an integer instead of

using a register. There are also immediates in some other instructions such as sw

and lw. Note that the size (maximum number of bits) of an immediate in any given

instruction depends on what type of instruction it is (more on this soon!).

2.1 Assume we have an array in memory that contains int *arr = {1,2,3,4,5,6,0}.
Let register s0 hold the address of the element at index 0 in arr. You may assume

integers are four bytes and our values are word-aligned. What do the snippets of

RISC-V code do? Assume that all the instructions are run one after the other in

the same context.



RISC-V Assembly, Control 3

a) lw t0, 12(s0) -->

b) sw t0, 16(s0) -->

c) slli t1, t0, 2

add t2, s0, t1

lw t3, 0(t2) -->

addi t3, t3, 1

sw t3, 0(t2)

d) lw t0, 0(s0)

xori t0, t0, 0xFFF -->

addi t0, t0, 1

Sets t0 equal to arr[3]

Stores t0 into arr[4]

Increments arr[t0] by 1

Sets t0 to -1 * arr[0]

2.2 Assume that s0 and s1 contain signed integers. Without any pseudoinstructions,

how can we branch on the following conditions to jump to some LABEL?

s0 < s1

blt s0, s1, LABEL

s0 ̸= s1

bne s0, s1, LABEL

s0 ≤ s1

bge s1, s0, LABEL

s0 > s1

blt s1, s0, LABEL

Note that RISC-V does not provide a bgt instruction because you can manipulate

the blt instruction to get an equivalent result. Also note that the above solutions

assume that s0 and s1 contained signed integers. If they are unsigned, then we

would use the unsigned variants of the above commands (namely, bltu, bgeu).

3 Lost in Translation
3.1 Translate between the C and RISC-V verbatim.

C RISC-V

// s0 -> a, s1 -> b

// s2 -> c, s3 -> z

int a = 4, b = 5, c = 6, z;

z = a + b + c + 10;

addi s0, x0, 4

addi s1, x0, 5

addi s2, x0, 6

add s3, s0, s1

add s3, s3, s2

addi s3, s3, 10

// s0 -> int * p = intArr;

// s1 -> a;

*p = 0;

int a = 2;

p[1] = p[a] = a;

sw x0, 0(s0)

addi s1, x0, 2

sw s1, 4(s0)

slli t0, s1, 2

add t0, t0, s0

sw s1, 0(t0)



4 RISC-V Assembly, Control

// s0 -> a, s1 -> b

int a = 5, b = 10;

if(a + a == b) {

a = 0;

} else {

b = a - 1;

}

addi s0, x0, 5

addi s1, x0, 10

add t0, s0, s0

bne t0, s1, else

xor s0, x0, x0

jal x0, exit

else:

addi s1, s0, -1

exit:

// computes s1 = 2ˆ30

// assume int s1, s0; was declared above

s1 = 1;

for(s0 = 0; s0 != 30; s0++) {

s1 *= 2;

}

addi s0, x0, 0

addi s1, x0, 1

addi t0, x0, 30

loop:

beq s0, t0, exit

add s1, s1, s1

addi s0, s0, 1

jal x0, loop

exit:

// s0 -> n, s1 -> sum

// assume n > 0 to start

for(int sum = 0; n > 0; n--) {

sum += n;

}

addi s1, x0, 0

loop:

beq s0, x0, exit

add s1, s1, s0

add s0, s0, -1

jal x0, loop

exit:

4 Arrays in RISC-V
Comment what each code block does. Each block runs in isolation. Assume that

there is an array, int arr[6] = {3, 1, 4, 1, 5, 9}, which starts at memory

address 0xBFFFFF00, and a linked list struct (as defined below), struct ll* lst,

whose first element is located at address 0xABCD0000. Let s0 contain arr’s address

0xBFFFFF00, and let s1 contain lst’s address 0xABCD0000. You may assume integers

and pointers are 4 bytes and that structs are tightly packed. Assume that lst’s last

node’s next is a NULL pointer to memory address 0x00000000.

struct ll {

int val;

struct ll* next;

}

4.1 lw t0, 0(s0)



RISC-V Assembly, Control 5

lw t1, 8(s0)

add t2, t0, t1

sw t2, 4(s0)

Sets arr[1] to arr[0] + arr[2].

4.2 loop: beq s1, x0, end

lw t0, 0(s1)

addi t0, t0, 1

sw t0, 0(s1)

lw s1, 4(s1)

jal x0, loop

end:

Increments all values in the linked list by 1.

4.3 add t0, x0, x0

loop: slti t1, t0, 6

beq t1, x0, end

slli t2, t0, 2

add t3, s0, t2

lw t4, 0(t3)

sub t4, x0, t4

sw t4, 0(t3)

addi t0, t0, 1

jal x0, loop

end:

Negates all elements in arr.

5 Memory Access
Using the given instructions and the sample memory arrays provided, what will

happen when the RISC-V code is executed? For load instructions (lw, lb, lh

), write out what each register will store. For store instructions (sw, sh, sb),

update the memory array accordingly. Recall that RISC-V is little-endian and byte

addressable.

5.1 li x5 0x00FF0000

lw x6 0(x5)

addi x5 x5 4

lh x7 2(x5)

lw x8 0(x6)

lb x9 3(x7)

What value does each register hold after

the code is executed?

...

0x000C561C

36
...

0xFDFDFDFD

0xDEADB33F
...

0xC5161C00
...

0xFFFFFFFF

0x00FF0004

0x00FF0000

0x00000036

0x00000024

0x0000000C

0x00000000



6 RISC-V Assembly, Control

x5 will hold 0x00FF0004, after adding 4 to the initial address. x6 will hold 36, loading

the word from the address 0x00FF0000. x7 will hold 0xC, loading the upper half of

the address 0x00FF0004. x8 will hold the word at 36 = 0x24, so 0xDEADB33F. Finally,

x9 will hold 0xFFFFFFC5, taking the most significant byte and sign-extending it.

5.2 li x5 0xABADCAFE

li x6 0xF9120504

li x7 0xBEEFCACE

sw x5 0(x6)

addi x6 x6 4

addi x5 x5 4

sh x6 2(x5)

sb x7 1(x7)

sb x7 3(x6)

sb x7 3(x5)

0x00000000

0xFFFFFFFF

0xF9120504

0xABADCAFE

0x00000004
0x00000000

Update the memory array with its new values after the code is executed. Some

memory addresses may not have been labeled for you yet.

0xCE000000

0xABADCAFE

0x0000CE00

0xCE080000

0x00000000

0xFFFFFFFF

0xF9120508

0xF9120504
0xBEEFCAD2
0xBEEFCACE

0xABADCB02
0xABADCAFE

0x00000004
0x00000000


	Pre-Check
	Instructions
	Lost in Translation
	Arrays in RISC-V
	Memory Access

