
CS 61C CALL, RISC-V Procedures
Fall 2022 Discussion 5

1 Pre-Check
This section is designed as a conceptual check for you to determine if you conceptually

understand and have any misconceptions about this topic. Please answer true/false

to the following questions, and include an explanation:

1.1 After calling a function and having that function return, the t registers may have

been changed during the execution of the function, while a registers cannot.

1.2 Because a0 and a1 are the return values of a function, the other a registers will be

unchanged after returning from a function.

1.3 The stack should only be manipulated at the beginning and end of functions, where

the callee saved registers are temporarily saved.

1.4 The compiler may output pseudoinstructions.

1.5 The main job of the assembler is to generate optimized machine code.

1.6 The object files produced by the assembler are only moved, not edited, by the linker.

1.7 The destination of all jump instructions is completely determined after linking.

2 CALL, RISC-V Procedures

2 Calling Convention Practice
2.1 In a function called myfunc, we want to call two functions called generate random

and reverse and multiply.

myfunc takes in 3 arguments: a0, a1, a2

generate random takes in no arguments and returns a random integer to a0.

reverse and multiply takes in 4 arguments: a0, a1, a2, a3 and doesn’t return

anything.

1 myfunc:

2 # Prologue (omitted)

3

4 # assign registers to hold arguments to myfunc

5 addi t0 a0 0

6 addi s0 a1 0

7 addi a7 a2 0

8

9 jal generate_random

10

11 # store and process return value

12 addi t1 a0 0

13 slli t5 t1 2

14

15 # setup arguments for reverse

16 add a0 t0 x0

17 add a1 s0 x0

18 add a2 t5 x0

19 addi a3 t1 0

20

21 jal reverse

22

23 # additional computations

24 add t0 s0 x0

25 add t1 t1 a7

26 add s9 s8 s7

27 add s3 x0 t5

28

29 # Epilogue (omitted)

30 ret

2.1 Which registers, if any, need to be saved on the stack in the prologue?

2.2 If generate random follows calling conventions, which registers do we need to save

on the stack before calling generate random?

CALL, RISC-V Procedures 3

2.3 If reverse follows calling conventions, which registers do we need to save on the stack

before calling reverse?

2.4 Which registers need to be recovered in the epilogue before returning?

3 Translation
3.1 In this question, we will be translating between RISC-V code and binary/hexadecimal

values.

Translate the following Risc-V instructions into binary and hexadecimal notations

1 addi s1 x0 -24 = 0b______________________________ = 0x____________

2 sh s1 4(t1) = 0b______________________________ = 0x____________

3.2 In this question, we will be translating between RISC-V code and binary/hexadecimal

values.

Translate the following hexadecimal values into the relevant RISC-V instruction.

1 0x234554B7 = _________________________________

2 0xFE050CE3 = _________________________________

4 RISC-V Addressing
We have several addressing modes to access memory (immediate not listed):

1. Base displacement addressing adds an immediate to a register value to create

a memory address (used for lw, lb, sw, sb).

2. PC-relative addressing uses the PC and adds the immediate value of the

instruction (multiplied by 2) to create an address (used by branch and jump

instructions).

3. Register Addressing uses the value in a register as a memory address. For

instance, jalr, jr, and ret, where jr and ret are just pseudoinstructions that

get converted to jalr.

4.1 What is the range of 32-bit instructions that can be reached from the current PC

using a branch instruction? Recall that RISC-V supports 16b instructions via an

extension.

4.2 What is the maximum range of 32-bit instructions that can be reached from the

current PC using a jump instruction?

4 CALL, RISC-V Procedures

4.3 Given the following RISC-V code (and instruction addresses), fill in the blank fields

for the following instructions (you’ll need your RISC-V reference sheet!). Each field

refers to a different block of the instruction encoding.

1 0x002cff00: loop: add t1, t2, t0 |________|________|________|________|________|__0x33__|

2 0x002cff04: jal ra, foo |__________________________|_________________|__0x6F__|

3 0x002cff08: bne t1, zero, loop |________|________|________|________|________|__0x63__|

4 ...

5 0x002cff2c: foo: jr ra ra =

5 CALL
The following is a diagram of the CALL stack detailing how C programs are built

and executed by machines.

Source files: foo.c

C Preprocessor

Intermediate files: foo.i, foo.ii

Compiler

Assembly files: foo.s

Assembler

Object files: foo.o

Linker Libs

Execeutable files: foo.out

Loader (OS)

Memory

5.1 How many passes through the code does the Assembler have to make? Why?

5.2 Which step in CALL resolves relative addressing? Absolute addressing?

CALL, RISC-V Procedures 5

5.3 Describe the six main parts of the object files outputted by the Assembler (Header,

Text, Data, Relocation Table, Symbol Table, Debugging Information).

6 Assembling RISC-V
Let’s say that we have a C program that has a single function sum that computes

the sum of an array. We’ve compiled it to RISC-V, but we haven’t assembled the

RISC-V code yet.

1 .import print.s # print.s is a different file

2 .data

3 array: .word 1 2 3 4 5

4 .text

5 .globl sum

6 sum: la t0, array

7 li t1, 4

8 mv t2, x0

9 loop: blt t1, x0, end

10 slli t3, t1, 2

11 add t3, t0, t3

12 lw t3, 0(t3)

13 add t2, t2, t3

14 addi t1, t1, -1

15 j loop

16 end: mv a0, t2

17 jal ra, print_int # Defined in print.s

6.1 Which lines contain pseudoinstructions that need to be converted to regular RISC-V

instructions?

6.2 For the branch/jump instructions, which labels will be resolved in the first pass of

the assembler? The second? Assume that the code is processed from top to bottom.

6 CALL, RISC-V Procedures

Let’s assume that the code for this program starts at address 0x00061C00. The

code below is labelled with its address in memory (think: why is there a jump of 8

between the first and second lines?).

1 0x00061C00: sum: la t0, array

2 0x00061C08: li t1, 4

3 0x00061C0C: mv t2, x0

4 0x00061C10: loop: blt t1, x0, end

5 0x00061C14: slli t3, t1, 2

6 0x00061C18: add t3, t0, t3

7 0x00061C1C: lw t3, 0(t3)

8 0x00061C20: add t2, t2, t3

9 0x00061C24: addi t1, t1, -1

10 0x00061C28: j loop

11 0x00061C2C: end: mv a0, t2

12 0x00061C30: jal ra, print_int

6.3 What is in the symbol table after the assembler makes its passes?

6.4 What’s contained in the relocation table?

	Pre-Check
	Calling Convention Practice
	Translation
	RISC-V Addressing
	CALL
	Assembling RISC-V

