
CS 61C Cache Performance
Fall 2022 Discussion 10

1 Pre-Check
This section is designed as a conceptual check for you to determine if you conceptually

understand and have any misconceptions about this topic. Please answer true/false

to the following questions, and include an explanation:

1.1 In a write-back cache, writes are generally slower than a write-through cache.

False. Writes are generally faster in a write-back cache since they only write to cache,

whereas writes in a write-through cache write to both cache and main memory.

1.2 In a fully associative cache, the number of index bits is always zero.

True. Since any block can go anywhere in a fully associative cache, there is no need

for an index field that determines where each block could go to.

1.3 For the same cache size and block size, a 4-way set associative cache will have fewer

index bits than a direct-mapped cache.

True. A direct mapped cache needs to index every line of the cache, whereas a 4-way

set associative cache needs to index every set of 4 lines. The 4-way set associative

cache will have 2 fewer index bits than the direct-mapped cache.

1.4 Using N-way set associative caches can help balance between hardware complexity

and cache performance.

True. As N goes up, there will generally be less conflict misses, but more intricate

comparator circuits are needed for the tag. Since the value of N is adjustable, N-way

set associative caches helps balance these two aspects.

1.5 Increasing cache size (while keeping other parameters constant) for a fully associative

cache with LRU replacement will never increase miss rate (for the same memory

access pattern).

True. Since we always keep the most recently used blocks in cache, the misses on a

cache with larger size is a subset of the misses on the same cache with smaller size.

Interestingly, this is not true if the replacement policy was FIFO! This is called

Bélády’s anomaly and is out of scope for this class. CS 162 will talk more about

this...

1.6 Adding another level of caches will never increase AMAT.

False. In the extreme case of a miss rate of 100%, adding a new level of caches will

increase AMAT by the hit time of those caches.

1.7 The miss penalty for the last level of caches is equal to the access time of main

memory.



2 Cache Performance

True. If we miss on the last level of caches, we must go to main memory to find the

data we need.

2 Cache Associativity
In the previous discussion, we primarily focuses on Direct-Mapped caches, in which

blocks map to specifically one slot in our cache. This is good for quick replacement

and finding out block, but not good for spatial efficiency!

This is where we bring associativity into the matter. We define associativity as

the number of slots a block can potentially map to in our cache. Thus, a Fully-

Associative cache has the most associativity, meaning every block can go anywhere

in the cache. Our Direct-Mapped cache, on the other hand, has the least, being only

1-way set associative.

For an N -way associative cache, the following are true:

N ∗# sets = # blocks, Index bits = log2(# sets)

2.1 Here’s some practice involving a 2-way set associative cache. This time we have

an 8-bit address space, 8 B blocks, and a cache size of 32 B. Classify each of the

following accesses as a cache hit (H), cache miss (M) or cache miss with replacement

(R). For any misses, list out which type of miss it is (Compulsory, Conflict, or

Capacity). Assume that we have an LRU replacement policy (in general, this is not

the case).

Address T/I/O Hit, Miss, Replace

0b0000 0100

0b0000 0101

0b0110 1000

0b1100 1000

0b0110 1000

0b1101 1101

0b0100 0101

0b0000 0100

0b1100 1000

Since our cache is 2-way set associative, there are 2 blocks in a set. Given the cache

size and the block size, we have 32 / 8 = 4 blocks. Thus, there are 4 / 2 = 2 sets in

our cache. We need log2(2) = 1 bit to differentiate the 2 sets, so we have 1 index

bit. Our block size of 8 B means we have log2(8) = 3 offset bits, and that the rest

of our bits are our tag bits. Therefore, our TIO breakdown means bits 0, 1, and 2

are our offset bits, the only index bit is bit 3, and bits 4-7 being the tag bits.



Cache Performance 3

0b0000 0100 Tag 0000, Index 0, Offset 100 - M, Compulsory

0b0000 0101 Tag 0000, Index 0, Offset 101 - H

0b0110 1000 Tag 0110, Index 1, Offset 000 - M, Compulsory

0b1100 1000 Tag 1100, Index 1, Offset 000 - M, Compulsory

0b0110 1000 Tag 0110, Index 1, Offset 000 - H

0b1101 1101 Tag 1101, Index 1, Offset 101 - R, Compulsory

0b0100 0101 Tag 0100, Index 0, Offset 101 - M, Compulsory

0b0000 0100 Tag 0000, Index 0, Offset 100 - H

0b1100 1000 Tag 1100, Index 1, Offset 000 - R, Capacity

2.2 What is the hit rate of our above accesses?

3 hits
9 accesses = 1

3 hit rate

3 Writes
When it comes to writing data to cache memory, there are multiple write policies to

consider that offer different options when building our system. Some of them you

might encounter are:

1. Write-through: In this policy, when we have a write we write to both the

cache and the memory. This is the case for every write, so the main memory

always has the updated data. This is simple to implement, but writing to

main memory every single time is slow.

2. Write-back: On a write, the data is only updated/written in the cache. The

main memory only receives the data upon eviction. This means the cache has

more up to date data most of the time. While this is faster as there is less

accesses to main memory, it is harder to implement as we have to include more

overhead, such as dirty bits and so on.

3. Write-around: Data is only written to main memory, and whenever we do

so we automatically invalidate the old data in the cache.

Another thing to consider is what we do when we want to write to memory that is

not in the cache, or a write miss. For that, we have 2 possible policies:

1. Write-allocate: On a write miss, we pull the block you missed on into the

cache

2. No write-allocate: On a write miss, you do not pull the block you missed

on into the cache. Only memory is updated. On a read cache miss, we still

pull the data into the cache.

3.1 Considering the above information, lets consider a direct mapped, no write-allocate

write-through cache with a capacity of 8B and a block size of 4B. Lets also assume

that the memory addresses are 8 bits each. Assuming the cache is completely empty

in the beginning, we make memory accesses to the following locations:

• 0x6A, Write

• 0x85, Read

• 0x6B, Read



4 Cache Performance

• 0x87, Read

• 0x68, Write

With the above memory access pattern and the given cache configuration, how many

times do we access the main memory?

Short Answer: 4

Long Answer:

• The first cache access to the location 0x6A is a miss, as the cache is initially

empty. As the cache is no write allocate, on this cache miss we just write to

the main memory only, so this is our first main memory access, and the cache

is still empty.

• Then on the second cache access, we have a read miss - for this one we go to

main memory, and actually bring the line in the cache, which occupies the

cache line with index 1. 2nd main memory access.

• Third one is again a read miss, so the same happens and the line with the

index 0 gets filled out with the memory address this time. Third main memory

access.

• This one is actually a cache hit - tag is 0b1 0000 (which was put in the cache

in step 2) so no main memory access, read hit.

• This one is a write hit, but because our cache is write through we actually

write in the main memory as well, so 4th main memory access.

3.2 Lets say for the same cache size, memory accesses but the only difference is that we

have a no write-allocate write-back cache instead. How many memory accesses to

the main memory do we have in this case?

Short Answer: 3

Long Answer:

• The first cache access it the same as above, 1st main memory access.

• Again, same as above, 2nd main memory access.

• Same as above, 3rd main memory access.

• Same as above, read hit (no main memory access)

• This one is a write hit, but this time as we have a write back cache, we do not

go to main memory - we write the new data on the cache, and turn the dirty

bit on the relevant line to 1.

3.3 For one last optimization, we decide to use a write-allocate cache instead. So, now we

have a write-allocate, write-back cache. How many times do we access the memory

now?

Short Answer: 2

Long Answer:

• This is again a write miss, but because our cache is write-allocate now, we

actually bring the data in from the main memory into the cache, and the line



Cache Performance 5

with index 0 gets filled. 1st main memory access.

• This one is the same as the above 2 examples, so cache line with index 1 gets

filled and we have a read miss. 2nd main memory access.

• Because the first write actually filled the 0th index line with the relevant data,

this 3rd memory access actually becomes a read hit, as there is data on the

cache now. No main memory access!

• Same as above, read hit (no main memory access).

• Same as 2.2, as the cache is write-back, this write hit is taken on the cache

itself, and the line on the cache gets changed - no main memory access.

3.4 We discovered in our previous subparts that one set of write policies leads to less

main memory accesses than the others. Out of the policies covered in class, is this

the most optimal set of write policies for a cache? If so, explain why. If they are

not, what trade-offs come as a result of these policies?

Our write-allocate, write-back cache seems to have the best performance here. In

practice, write-back policies have been used much than write-through, though some

architectures still employ specialized write-through caches. However, some trade-offs

to a write-back cache include having to deal with overhead especially when dealing

with multiple local caches as a result of multiple CPUs (this is different from multi-

level cache structures). In a write-back cache, where the caches may hold updated

data while main memory doesn’t, ’cache coherency’ must be maintained between

caches so that each write is propagated across the system.

4 AMAT
Recall that AMAT stands for Average Memory Access Time. The main formula for

it is:
AMAT = Hit Time +Miss Rate ∗Miss Penalty

In a multi-level cache structure, we can separate miss rates into two types that we

consider for each level.

• Global: Calculated as the number of accesses that missed at that level divided

by the total number of accesses to the cache system.

• Local: Calculated as the number of accesses that missed at that level divided

by the total number of accesses to that cache level.

4.1 In a 2-level cache system, after 100 total accesses to the cache system, we find that

the L2$ (L2 cache) ended up missing 20 times. What is the global miss rate of L2$?

20
100 = 20%

4.2 Given the system from the previous subpart, if L1$ had a local miss rate of 50%,

what is the local miss rate of L2$?

20
50%∗100 = 20

50 = 40%. We know that L2$ is accessed when L1$ misses, so if L1$
misses 50% of the time, that means we access L2$ 50 times, of which we ended up

having 20 misses in L2$.



6 Cache Performance

Suppose your system consists of:

1. An L1$ that has a hit time of 2 cycles and has a local miss rate of 20%

2. An L2$ that has a hit time of 15 cycles and has a global miss rate of 5%

3. Main memory where accesses take 100 cycles

4.3 What is the local miss rate of L2$?

The number of accesses to the L2$ is the number of misses in L1$, so we divide the

global miss rate of L2$ with the miss rate of L1$.

L2$ Local miss rate = Misses In L2$
Accesses in L2$=

Misses in L2$
Total Accesses/

Misses in L1$
Total Accesses =

Global Miss Rate
L1$ Miss Rate = 5%

20% = 0.25 = 25%

4.4 What is the AMAT of the system?

AMAT = 2 + 20% x (15 + 25% x 100) = 10 cycles, as the Miss Penalty of the L1$
is the ’local’ AMAT of the L2$.

Using global rates of each level, alternatively, AMAT = 2 + 20% x 15 + 5% x 100

= 10 cycles (using global miss rates)

4.5 Suppose we want to reduce the AMAT of the system to 8 cycles or lower by adding

in a L3$. If the L3$ has a local miss rate of 30%, what is the largest hit time that

the L3$ can have?

Let H = hit time of the cache. Extending the AMAT equation so that the Miss

Penalty of the L2$ is the ’local’ AMAT of the L3$, we can write:

2 + 20% ∗ (15 + 25% ∗ (H + 30% ∗ 100)) ≤ 8

Solving for H, we find that H ≤ 30. So the largest hit time is 30 cycles.


	Pre-Check
	Cache Associativity
	Writes
	AMAT

