
CS 61C Parallelism
Fall 2022 Discussion 11

1 Pre-Check
This section is designed as a conceptual check for you to determine if you conceptually

understand and have any misconceptions about this topic. Please answer true/false

to the following questions, and include an explanation:

1.1 SIMD is a form of instruction-level parallelism.

1.2 SIMD is ideal for flow-control heavy tasks (i.e. tasks with many branches/if state-

ments).

1.3 Intel’s SIMD intrinsic instructions invoke large registers available on the architecture

in order to perform one operation on multiple values at once.

1.4 Each hardware thread in the CPU uses a shared cache.

1.5 The number of hardware threads available can be more than the number of processor

cores on the computer.

1.6 In thread-level parallelism, the amount of speedup is directly proportional to the

increase in number of hardware threads.

2 Parallelism

2 Data-Level Parallelism
The idea central to data level parallelism is vectorized calculation: applying opera-

tions to multiple items (which are part of a single vector) at the same time.

Some machines with x86 architectures have special, wider registers, that can hold

128, 256, or even 512 bits. Intel intrinsics (Intel proprietary technology) allow us to

use these wider registers to harness the power of DLP in C code.

Below is a small selection of the available Intel intrinsic instructions. All of them

perform operations using 128-bit registers. The type m128i is used when these

registers hold 4 ints, 8 shorts or 16 chars; m128d is used for 2 double precision

floats, and m128 is used for 4 single precision floats. Where you see “epiXX”, epi

stands for extended packed integer, and XX is the number of bits in the integer.

“epi32” for example indicates that we are treating the 128-bit register as a pack of 4

32-bit integers.

• __m128i _mm_set1_epi32(int i):

Set the four signed 32-bit integers within the vector to i.

• __m128i _mm_loadu_si128(__m128i *p):

Load the 4 successive ints pointed to by p into a 128-bit vector.

• __m128i _mm_mullo_epi32(__m128i a, __m128i b):

Return vector (a0 · b0, a1 · b1, a2 · b2, a3 · b3).
• __m128i _mm_add_epi32(__m128i a, __m128i b):

Return vector (a0 + b0, a1 + b1, a2 + b2, a3 + b3)

• void _mm_storeu_si128(__m128i *p, __m128i a):

Store 128-bit vector a at pointer p.

• __m128i _mm_and_si128(__m128i a, __m128i b):

Perform a bitwise AND of 128 bits in a and b, and return the result.

• __m128i _mm_cmpeq_epi32(__m128i a, __m128i b):

The ith element of the return vector will be set to 0xFFFFFFFF if the ith

elements of a and b are equal, otherwise it’ll be set to 0.

2.1 SIMD-ize the following function, which returns the product of all of the elements in

an array.

static int product_naive(int n, int *a) {

int product = 1;

for (int i = 0; i < n; i++) {

product *= a[i];

}

return product;

}

Parallelism 3

Things to think about: When iterating through a loop and grabbing elements 4 at a

time, how should we update our index for the next iteration? What if our array has

a length that isn’t a multiple of 4? Can we always SIMD-ize an entire array? What

can we do to handle this tail case?

static int product_vectorized(int n, int *a) {

int result[4];

__m128i prod_v = __;

for (int i = 0; i < _____; i += ___) { // Vectorized loop

prod_v = __;

}

__mm_storeu_si128(__________________________, __________________________);

for (int i = ______________; i < ____________; i++) { // Handle tail case

result[0] *= ________________________;

}

return ___;

}

3 Thread-Level Parallelism
OpenMP provides an easy interface for using multithreading within C programs.

Some examples of OpenMP directives:

• The parallel directive indicates that each thread should run a copy of the

code within the block. If a for loop is put within the block, every thread will

run every iteration of the for loop.

#pragma omp parallel

{

...

}

NOTE: The opening curly brace needs to be on a newline or else there

will be a compile-time error!

• The parallel for directive will split up iterations of a for loop over various

threads. Every thread will run different iterations of the for loop. The

following two code snippets are equivalent.

#pragma omp parallel for

for (int i = 0; i < n; i++) {

...

}

#pragma omp parallel

{

#pragma omp for

for (int i =0; i < n; i++) { ... }

}

There are two functions you can call that may be useful to you:

• int omp_get_thread_num() will return the number of the thread executing

the code

• int omp_get_num_threads() will return the number of total hardware threads

executing the code

4 Parallelism

3.1 For each question below, state and justify whether the program is sometimes

incorrect, always incorrect, slower than serial, faster than serial, or none

of the above. Assume the default number of threads is greater than 1. Assume

no thread will complete before another thread starts executing. Assume arr is an

int[] of length n.

(a) // Set element i of arr to i

#pragma omp parallel

{

for (int i = 0; i < n; i++)

arr[i] = i;

}

(b) // Set arr to be an array of Fibonacci numbers.

arr[0] = 0;

arr[1] = 1;

#pragma omp parallel for

for (int i = 2; i < n; i++)

arr[i] = arr[i-1] + arr[i - 2];

(c) // Set all elements in arr to 0;

int i;

#pragma omp parallel for

for (i = 0; i < n; i++)

arr[i] = 0;

(d) // Set element i of arr to i;

int i;

#pragma omp parallel for

for (i = 0; i < n; i++)

*arr = i;

arr++;

3.2 What potential issue can arise from this code?

1 // Decrements element i of arr. n is a multiple of omp_get_num_threads()

2 #pragma omp parallel

3 {

4 int threadCount = omp_get_num_threads();

5 int myThread = omp_get_thread_num();

6 for (int i = 0; i < n; i++) {

7 if (i % threadCount == myThread) arr[i] -= 1;

8 }

9 }

Parallelism 5

4 Concurrency
The benefits of multi-threading programming come only after you understand

concurrency. Here are two of the most common concurrency issues:

1. Cache-incoherence: each hardware thread has its own cache, hence data

modified in one thread may not be immediately reflected in the other. This

can be solved by bypassing the cache and writing directly to memory, i.e. using

volatile keywords in many languages, or by using a coherency protocol such as

MOESI.

2. Read-modify-write: Read-modify-write is a very common pattern in pro-

gramming. In the context of multi-threading programming, the interleaving

of R, M, W stages often produces a lot of issues.

4.1 MOESI Protocol
Parallel processing allows individual cores of a CPU to operate as independent units

with their own caches. However, for this to be the case, the machine must be able to

coordinate the information flow of all cores and all caches so that this information

is reliable to some degree. Therefore, we impose cache states, composing of the

valid, dirty and shared bits, to denote status of the cache data at a specific cache

block. These cache states are used when there is a cache miss or write to a certain

core’s cache so that if the information is modified in one place, the other caches are

informed. In summary, we don’t want two caches with different data both saying

that they have the most up-to-date data, because that simply can’t be true. In other

words, from the perspective of the host processor, their cache line states may be

updated due to actions taken by proxy processor execution.

Consider this visual representation of the addressing of a cache block and the

updated construction of the block itself:

Address

Tag Index Offset
−→

Contents

State

Valid Dirty Shared Data

Each state describes a specific set of conditions, on a single cache block, in respect

to the overall memory system(all caches and main memory).

6 Parallelism

4.1 Match all conditions below with their corresponding state(s).

Note: Some conditions can apply to multiple states!

(a) data in host cache up-to-date

(b) data in main memory is outdated

(c) data in main memory up-to-date

(d) if evicted, host cache must write this

line’s data back to main memory

(e) no copies exist in other (proxy)

caches

(f) copies may exist in other (proxy)

caches

(g) access from processor will result in

a miss

1. Modified(M)

2. Owned(O)

3. Exclusive(E)

4. Shared(S)

5. Invalid(I)

Parallelism 7

4.2 Atomic Instructions
In order to solve the problems created by Read-modify-write, we have to rely on the

idea of uninterrupted execution, also known as atomic execution.

In RISC-V, we have two categories of atomic instructions:

1. Amoswap: allows for uninterrupted memory operations within a single in-

struction

2. Load-reserve, store-conditional: allows us to have uninterrupted execution

across multiple instructions

Both of these can be used to achieve atomic primitives. Here we’ll focus on the

former with this example:

Test-and-set

Start: addi t0 x0 1 # Locked = 1

amoswap.w.aq t1 t0 (a0)

bne t1 x0 Start

If the lock is not free, retry

... # Critical section

amoswap.w.rl x0 x0 (a0) # Release lock

amoswap rd, rs2, (rs1): Atomically, loads the word starting at address rs1 into

rd and puts rs2 into memory at address rs1. Data races are avoided using the aq

and rl flags, which acquire a lock that forces multiple threads to wait their turn

until the lock is released.

Test-and-set: We have a lock stored at the address specified by a0. We utilize

amoswap to put in 1 and get the old value. If the old value was a 1, we would not

have changed the value of the lock and we will realize that someone currently has

the lock. If the old value was a 0, we will have just ”locked” the lock and can

continue with the critical section. When we are done, we put a 0 back into the lock

to ”unlock” it.

4.2 We’ve experimented with data synchronization across threads in C, but now let’s

take a look at how to parallelize and avoid data races in RISC-V!

We want to parallelize a program that finds the sum of the integers in an array

pointed to by a0 (array length = a2) and places it in memory at address a1. There

is a free word of memory initialized to zero (i.e. result of calloc(4, 1)) pointed to

by a3. For the sake of simplicity, assume there is a function get thread num that

returns the current thread’s number and a function get num threads that returns

the total number of threads.

8 Parallelism

Here is some skeleton code to parallelize this operation. Note the use of amoswap.

Before filling out the skeleton code, answer questions 4.3 and 4.4 first.

1 #Prologue

2 ...

3 mv s0 a0 #s0 points to the array

4 mv s1 a1 #s1 points to the global sum

5 mv s2 a2 #s2 has the length of array

6 jal get_num_threads

7 mv s3 a0 #s3 has the total number of threads

8 jal get_thread_num

9 mv s4 a0 #s4 has the current thread number

10 li t0 0

11 Loop:

12 bge ____________

13 slli t1 s4 2

14 add t1 s0 t1 #index into array

15 lw t2 0(t1)

16 add t0 t0 t2 #add to local sum

17 add ____________

18 j Loop

19 Exit:

20 ________________

21 Try:

22 lw t1 0(a3) #Check if work is being done in another thread

23 bnez t1 Try

24 amoswap.w.aq ___________

25 ________________

26 ________________

27 add t2 t2 t0 #add local sum to total

28 ________________

29

30 amoswap.w.rl ___________

31 #Epilogue

32 ...

4.3 Why do we want to use an atomic instruction in our parallelized implementation?

4.4 Between which lines in the program above should threads start to run in parallel on

separate copies of code? (Equivalent to where we put #pragma omp parallel in C)

	Pre-Check
	Data-Level Parallelism
	Thread-Level Parallelism
	Concurrency
	MOESI Protocol
	Atomic Instructions

