
CS 61C C and Memory
Fall 2023 Discussion 2

1 Pre-Check
This section is designed as a conceptual check for you to determine if you conceptually

understand and have any misconceptions about this topic. Please answer true/false

to the following questions, and include an explanation:

1.1 True or False: C is a pass-by-value language.

True. If you want to pass a reference to anything, you should use a pointer.

1.2 The following is correct C syntax:

int num = 43

False. Semicolon!!

int num = 43;

1.3 In compiled languages, the compile time is generally pretty fast, however the run-

time is significantly slower than interpreted languages.

False. Reasonable compilation time, excellent run-time performance. It optimizes

for a given processor type and operating system.

1.4 The correct way of declaring a character array is char[] array.

False. The correct way is char array[].

1.5 Bitwise and logical operations result in the same behaviour for given bitstrings.

False. Bitwise and logical operations fundamentally speaking, perform the same

operations, just in different contexts. Bitwise operations compare and operate

on inputs bit-by-bit, from least to most significant bit in the bitstring. Logical

operations compare and operate on inputs as a whole, where anything not 0 can be

considered to be a 1.

Note that in 61C and both bitwise and logical operations, 0 can be considered as

False and not-0 can be considered as True in comparisons!

1.6 What is a pointer? What does it have in common to an array variable?

As we like to say, ”everything is just bits.” A pointer is just a sequence of bits,

interpreted as a memory address. An array acts like a pointer to the first element

in the allocated memory for that array. However, an array name is not a variable,

2 C and Memory

that is, &arr = arr whereas &ptr != ptr unless some magic happens (what does that

mean?).

1.7 If you try to dereference a variable that is not a pointer, what will happen? What

about when you free one?

It will treat that variable’s underlying bits as if they were a pointer and attempt to

access the data there. C will allow you to do almost anything you want, though if

you attempt to access an ”illegal” memory address, it will segfault for reasons we

will learn later in the course. It’s why C is not considered ”memory safe”: you can

shoot yourself in the foot if you’re not careful. If you free a variable that either has

been freed before or was not malloced/calloced/realloced, bad things happen. The

behavior is undefined and terminates execution, resulting in an ”invalid free” error.

1.8 Memory sectors are defined by the hardware, and cannot be altered.

False. The four major memory sectors, stack, heap, static/data, and text/code for

any given process (application) are defined by the operating system and may differ

depending on what kind of memory is needed for it to run.

What’s an example of a process that might need significant stack space, but very

little text, static, and heap space? (Almost any basic deep recursive scheme, since

you’re making many new function calls on top of each other without closing the

previous ones, and thus, stack frames.)

What’s an example of a text and static heavy process? (Perhaps a process that

is incredibly complicated but has efficient stack usage and does not dynamically

allocate memory.)

What’s an example of a heap-heavy process? (Maybe if you’re using a lot of dynamic

memory that the user attempts to access.)

1.9 For large recursive functions, you should store your data on the heap over the stack.

False. Generally speaking, if you need to keep access to data over several separate

function calls, use the heap. However, recursive functions call themselves, creating

multiple stack frames and using each of their return values. If you store data on the

heap in a recursive scheme, your malloc calls may lead to you rapidly running out

of memory, or can lead to memory leaks as you lose where you allocate memory as

each stack frame collapses.

C and Memory 3

2 Pointers and Endianness
• Machines are byte-addressable. Memory is like a large array of cells. Each

storage cell stores 8 bits, and these byte cells are ordered with an address.

• A 32b architecture has 32 bit memory addresses, addresses 0x00000000 -

0xFFFFFFFF

Typed variables

• Examples: int, long, char

• sizeof(dataType) indicates the number of bytes in memory required to store a

particular data type

Pointers

• a variable whose value is an address of another variable

• Declaration: dataType* name;

• Dereference operator: Based on the pointer declaration statement, the compiler

fetches the corresponding amount of bytes. For example, if p is a pointer to a

4 byte integer variable x, then *p involves fetching 4 bytes starting from the

address of x, which is the value of p. Therefore, the value of x and value of *p

are equal

Endianness

• Recall different data types are stored in x amount of contiguous byte cells in

memory

• Big endian: the most significant byte of the value of a variable is stored in

memory at the lowest address of the chunk of byte cells allocated for that

variable

• Little endian: the least significant byte of the value of a variable is stored

in memory at the lowest address of the chunk of byte cells allocated for the

variable

2.1 Based on the following code and a 32b architecture, fill in the values located in

memory at the byte cells for both a big endian and little endian system.

Suppose:

• the array nums starts at address 0x36432100

• p’s address is 0x10000000

1 uint32_t nums[2] = {10, 20};

2 uint32_t* q = (uint32_t*) nums;

3 uint32_t** p = &q;

4 C and Memory

Little endian

...

...

...

0x20

0x00

0x00

0x00
...

0xFFFFFFFF
0x36432107

0x36432100

0x20000003

0x20000000

0x10000003

0x10000000
Big endian

...

...

...

0x00

0x00

0x00

0x20
...

0xFFFFFFFF
0x36432107

0x36432100

0x20000003

0x20000000

0x10000003

0x10000000

Little endian

...

0x00

0x00

0x00

0x14

0x00

0x00

0x00

0x0A
...

0x36

0x43

0x21

0x00
...

0x20

0x00

0x00

0x00
...

0xFFFFFFFF
0x36432107

0x36432100

0x20000003

0x20000000

0x10000003

0x10000000

C and Memory 5

Big endian

...

0x14

0x00

0x00

0x00

0x0A

0x00

0x00

0x00
...

0x00

0x21

0x43

0x36
...

0x00

0x00

0x00

0x20
...

0xFFFFFFFF
0x36432107

0x36432100

0x20000003

0x20000000

0x10000003

0x10000000

2.2 Provide two answers for the following questions: big endian system and little endian

system

Suppose uint64_t* y = (uint64_t*) nums is executed after the code

1. What does *y evaluate to?

Because y is a pointer to a uint64_t* variable, dereferencing results in evaluating

8 contiguous bytes starting from the value of y (an address in memory =

0x36432100) in big endian or little endian.

Little-endian: 0x00000014 0000000A

Big-endian: 0x0000000A 00000014

2. What does &q evaluate to? What does &nums evaluate to?

&q evaluates to 0x20000000 in both big endian and little endian. This is the

value of variable p (p is located at 0x10000000). &nums evaluates to 0x36432100.

Both q and nums act as pointers to the first element of the nums array. However,

nums is not like a variable. The values of nums and &nums are equal, while the

address of variable q is not equal to the address of the data it is pointing to.

3. What does *(q+1) evaluate to?

*(q+1) = nums[1] = *(nums+1) = 20 (decimal). q and nums have the same

value. q is a pointer to a 32 bit integer. Therefore, *(q+1) means the 4 bytes

stored starting at address = q plus 1*sizeof(uint32_t) = 0x36432100 + 0x4 =

0x36432104 evaluated in big endian or little endian

6 C and Memory

3 Pass-by-who?
3.1 Implement the following functions so that they work as described.

(a) Swap the value of two ints. Remain swapped after returning from this function.

Hint: Our answer is around three lines long.

1 void swap(int *x, int *y) {

2 int temp = *x;

3 *x = *y;

4 *y = temp;

5 }

(b) Return the number of bytes in a string. Do not use strlen.

Hint: Our answer is around 5 lines long.

1 int mystrlen(char* str) {

2 int count = 0;

3 while (*str != 0) {

4 str++;

5 count++;

6 }

7 return count;

8 }

4 Memory Management
C does not automatically handle memory for you. In each program, an address

space is set aside, separated in 2 dynamically changing regions and 2 ’static’ regions.

• The Stack: local variables inside of functions, where data is garbage immedi-

ately after the function in which it was defined returns. Each function call

creates a stack frame with its own arguments and local variables. The stack

dynamically changes, growing downwards as multiple functions are called

within each other (LIFO structure), and collapsing upwards as functions finish

execution and return.

• The Heap: memory manually allocated by the programmer with malloc,

calloc, or realloc. Used for data we want to persist beyond function calls,

growing upwards to ’meet’ the stack. Careful heap management is necessary

to avoid Heisenbugs! Memory is freed only when the programmer explicitly

frees it!

• Static data: global variables declared outside of functions, does not grow or

shrink through function execution.

• Code (or Text): loaded at the start of the program and does not change after,

contains executable instructions and any pre-processor macros.

There are a number of functions in C that can be used to dynamically allocate

memory on the heap. The following are the ones we use in this class:

C and Memory 7

• malloc(size_t size) allocates a block of size bytes and returns the start of

the block. The time it takes to search for a block is generally not dependent

on size.

• calloc(size_t count, size_t size) allocates a block of count * size bytes,

sets every value in the block to zero, then returns the start of the block.

• realloc(void *ptr, size_t size) ”resizes” a previously-allocated block of

memory to size bytes, returning the start of the resized block.

• free(void *ptr) deallocates a block of memory which starts at ptr that was

previously allocated by the three previous functions.

4.1 Write the code necessary to allocate memory on the heap in the following scenarios

(a) An array arr of k integers

arr = (int *) malloc(sizeof(int) * k);

(b) A string str containing p characters

str = (char *) malloc(sizeof(char) * (p + 1)); Don’t forget the null ter-

minator!

(c) An n×m matrix mat of integers initialized to zero.

mat = (int *) calloc(n * m, sizeof(int)); Alternative solution. This might

be needed if you wanted to efficiently permute the rows of the matrix.

1 mat = (int **) calloc(n, sizeof(int *));

2 for (int i = 0; i < n; i++)

3 mat[i] = (int *) calloc(m, sizeof(int));

(d) Unallocating all but the first 5 values in an integer array arr. (Assume arr has

more than 5 values)

arr = realloc(arr, 5 * sizeof(int));

4.2 Compare the following two implementations of a function which duplicates a string.

Is either one correct? Which one runs faster?

1 char* strdup1(char* s) {

2 int n = strlen(s);

3 char* new_str = malloc((n + 1) * sizeof(char));

4 for (int i = 0; i < n; i++) new_str[i] = s[i];

5 return new_str;

6 }

7 char* strdup2(char* s) {

8 int n = strlen(s);

8 C and Memory

9 char* new_str = calloc(n + 1, sizeof(char));

10 for (int i = 0; i < n; i++) new_str[i] = s[i];

11 return new_str;

12 }

The first implementation is incorrect because malloc doesn’t initialize the allocated

memory to any given value, so the new string may not be null-terminated. This

is easily fixed, however, just by setting the last character in new str to the null

terminator. The second implementation is correct since calloc will set each character

to zero, so the string is always null-terminated.

Between the two implementations, the first will run slightly faster since malloc

doesn’t need to set the memory values. calloc does set each memory location, so it

runs in O(n) time in the worst case. Effectively, we do ”extra” work in the second

implementation setting every character to zero, and then overwrite them with the

copied values afterwards.

	Pre-Check
	Pointers and Endianness
	Pass-by-who?
	Memory Management

