
CS 61C C and Memory
Fall 2023 Discussion 2

1 Pre-Check
This section is designed as a conceptual check for you to determine if you conceptually

understand and have any misconceptions about this topic. Please answer true/false

to the following questions, and include an explanation:

1.1 True or False: C is a pass-by-value language.

1.2 The following is correct C syntax:

int num = 43

1.3 In compiled languages, the compile time is generally pretty fast, however the run-

time is significantly slower than interpreted languages.

1.4 The correct way of declaring a character array is char[] array.

1.5 Bitwise and logical operations result in the same behaviour for given bitstrings.

1.6 What is a pointer? What does it have in common to an array variable?

1.7 If you try to dereference a variable that is not a pointer, what will happen? What

about when you free one?

1.8 Memory sectors are defined by the hardware, and cannot be altered.

1.9 For large recursive functions, you should store your data on the heap over the stack.

2 C and Memory

2 Pointers and Endianness
• Machines are byte-addressable. Memory is like a large array of cells. Each

storage cell stores 8 bits, and these byte cells are ordered with an address.

• A 32b architecture has 32 bit memory addresses, addresses 0x00000000 -

0xFFFFFFFF

Typed variables

• Examples: int, long, char

• sizeof(dataType) indicates the number of bytes in memory required to store a

particular data type

Pointers

• a variable whose value is an address of another variable

• Declaration: dataType* name;

• Dereference operator: Based on the pointer declaration statement, the compiler

fetches the corresponding amount of bytes. For example, if p is a pointer to a

4 byte integer variable x, then *p involves fetching 4 bytes starting from the

address of x, which is the value of p. Therefore, the value of x and value of *p

are equal

Endianness

• Recall different data types are stored in x amount of contiguous byte cells in

memory

• Big endian: the most significant byte of the value of a variable is stored in

memory at the lowest address of the chunk of byte cells allocated for that

variable

• Little endian: the least significant byte of the value of a variable is stored

in memory at the lowest address of the chunk of byte cells allocated for the

variable

2.1 Based on the following code and a 32b architecture, fill in the values located in

memory at the byte cells for both a big endian and little endian system.

Suppose:

• the array nums starts at address 0x36432100

• p’s address is 0x10000000

1 uint32_t nums[2] = {10, 20};

2 uint32_t* q = (uint32_t*) nums;

3 uint32_t** p = &q;

C and Memory 3

Little endian

...

...

...

0x20

0x00

0x00

0x00
...

0xFFFFFFFF
0x36432107

0x36432100

0x20000003

0x20000000

0x10000003

0x10000000
Big endian

...

...

...

0x00

0x00

0x00

0x20
...

0xFFFFFFFF
0x36432107

0x36432100

0x20000003

0x20000000

0x10000003

0x10000000

2.2 Provide two answers for the following questions: big endian system and little endian

system

Suppose uint64_t* y = (uint64_t*) nums is executed after the code

1. What does *y evaluate to?

2. What does &q evaluate to? What does &nums evaluate to?

3. What does *(q+1) evaluate to?

3 Pass-by-who?
3.1 Implement the following functions so that they work as described.

(a) Swap the value of two ints. Remain swapped after returning from this function.

Hint: Our answer is around three lines long.

void swap(________________, ________________) {

(b) Return the number of bytes in a string. Do not use strlen.

Hint: Our answer is around 5 lines long.

int mystrlen(________________) {

4 C and Memory

4 Memory Management
C does not automatically handle memory for you. In each program, an address

space is set aside, separated in 2 dynamically changing regions and 2 ’static’ regions.

• The Stack: local variables inside of functions, where data is garbage immedi-

ately after the function in which it was defined returns. Each function call

creates a stack frame with its own arguments and local variables. The stack

dynamically changes, growing downwards as multiple functions are called

within each other (LIFO structure), and collapsing upwards as functions finish

execution and return.

• The Heap: memory manually allocated by the programmer with malloc,

calloc, or realloc. Used for data we want to persist beyond function calls,

growing upwards to ’meet’ the stack. Careful heap management is necessary

to avoid Heisenbugs! Memory is freed only when the programmer explicitly

frees it!

• Static data: global variables declared outside of functions, does not grow or

shrink through function execution.

• Code (or Text): loaded at the start of the program and does not change after,

contains executable instructions and any pre-processor macros.

There are a number of functions in C that can be used to dynamically allocate

memory on the heap. The following are the ones we use in this class:

• malloc(size_t size) allocates a block of size bytes and returns the start of

the block. The time it takes to search for a block is generally not dependent

on size.

• calloc(size_t count, size_t size) allocates a block of count * size bytes,

sets every value in the block to zero, then returns the start of the block.

• realloc(void *ptr, size_t size) ”resizes” a previously-allocated block of

memory to size bytes, returning the start of the resized block.

• free(void *ptr) deallocates a block of memory which starts at ptr that was

previously allocated by the three previous functions.

4.1 Write the code necessary to allocate memory on the heap in the following scenarios

(a) An array arr of k integers

C and Memory 5

(b) A string str containing p characters

(c) An n×m matrix mat of integers initialized to zero.

(d) Unallocating all but the first 5 values in an integer array arr. (Assume arr has

more than 5 values)

4.2 Compare the following two implementations of a function which duplicates a string.

Is either one correct? Which one runs faster?

1 char* strdup1(char* s) {

2 int n = strlen(s);

3 char* new_str = malloc((n + 1) * sizeof(char));

4 for (int i = 0; i < n; i++) new_str[i] = s[i];

5 return new_str;

6 }

7 char* strdup2(char* s) {

8 int n = strlen(s);

9 char* new_str = calloc(n + 1, sizeof(char));

10 for (int i = 0; i < n; i++) new_str[i] = s[i];

11 return new_str;

12 }

	Pre-Check
	Pointers and Endianness
	Pass-by-who?
	Memory Management

