
CS 61C Floating Point
Fall 2023 Discussion 3

1 Pre-Check
This section is designed as a conceptual check for you to determine if you conceptually

understand and have any misconceptions about this topic. Please answer true/false

to the following questions, and include an explanation:

1.1 The idea of floating point is to use the ability to move the radix (decimal) point

wherever to represent a large range of real numbers as exact as possible.

True. Floating point:

- Provides support for a wide range of values. (Both very small and very large)

- Helps programmers deal with errors in real arithmetic because floating point can

represent + ∞, -∞, NaN (Not a number)

- Keeps high precision. Recall that precision is a count of the number of bits in a

computer word used to represent a value. IEEE 754 allocates a majority of bits for

the significand, allowing for the use of a combination of negative powers of two to

represent fractions.

1.2 Floating Point and Two’s Complement can represent the same total amount of

numbers (any reals, integer, etc.) given the same number of bits.

False. Floating Point can represent infinities as well as NaNs, so the total amount of

representable numbers is lower than Two’s Complement, where every bit combination

maps to a unique integer value.

1.3 The distance between floating point numbers increases as the absolute value of the

numbers increase.

True. The uneven spacing is due to the exponent representation of floating point

numbers. There are a fixed number of bits in the significand. In IEEE 32 bit storage

there are 23 bits for the significand, which means the LSB is 2−22 times the MSB.

If the exponent is zero (after allowing for the offset) the difference between two

neighboring floats will be 2−22. If the exponent is 8, the difference between two

neighboring floats will be 2−14 because the mantissa is multiplied by 28. Limited

precision makes binary floating-point numbers discontinuous; there are gaps between

them.

1.4 Floating Point addition is associative.

False. Because of rounding errors, you can find Big and Small numbers such that:

(Small + Big) + Big != Small + (Big + Big)

FP approximates results because it only has 23 bits for Significand.

2 Floating Point

2 Floating Point
The IEEE 754 standard defines a binary representation for floating point values

using three fields.

• The sign determines the sign of the number (0 for positive, 1 for negative).
• The exponent is in biased notation. For instance, the bias is -127 which

comes from -(28−1 − 1) for single-precision floating point numbers.
• The significand or mantissa is akin to unsigned integers, but used to store a

fraction instead of an integer.

The below table shows the bit breakdown for the single precision (32-bit) represen-

tation. The leftmost bit is the MSB and the rightmost bit is the LSB.

1 8 23

Sign Exponent Mantissa/Significand/Fraction

For normalized floats:

Value = (−1)Sign ∗ 2Exp+Bias ∗ 1.significand2

For denormalized floats:

Value = (−1)Sign ∗ 2Exp+Bias+1 ∗ 0.significand2

Exponent Significand Meaning

0 Anything Denorm

1-254 Anything Normal

255 0 Infinity

255 Nonzero NaN

Note that in the above table, our exponent has values from 0 to 255. When

translating between binary and decimal floating point values, we must remember

that there is a bias for the exponent.

2.1 Convert the following single-precision floating point numbers from hexadecimal

to decimal or from decimal to hexadecimal. You may leave your answer as an

expression.

• 0x00000000

0

• 8.25

0x41040000

• 0x00000F00

(2−12 + 2−13 + 2−14 + 2−15) ∗ 2−126

• 39.5625

0x421E4000

• 0xFF94BEEF

NaN

• -∞

0xFF800000

• 1/3

N/A — Impossible to actually rep-

resent, we can only approximate it

We’ll go more into depth with converting 8.25 and 0x00000F00. For the sake of

brevity, the rest of the conversions can be done using the same process.

To convert 8.25 into binary, we first split up our 32b hexadecimal number into three

parts. The sign is positive, so our sign bit −1S will be 0. Then, we can solve for

Floating Point 3

our significand. We know that our number will have a non-zero exponent, so we

will have a leading 1 for our mantissa. Splitting 8.25 into its integer and decimal

portions, we can determine that 8 will be encoded in binary as 1000. and 0.25 will

be .01 (the 1 corresponds to the 2−2 place), so by implying the MSB, our significand

will be 00001000.. Finally, we can solve for the exponent. As our leading 1 is in

the 23 place to encode 8, we must use the bias in reverse to find what exponent

we encode in binary. 130 added with a bias of -127 results in 3, so our exponent is

0b10000010. Our final binary number concatenated is 0 100 0001 0 000 0100 0000

0000 0000 0000, or 0x41040000.

For 0x00000F00, splitting up the hexadecimal gives us a sign bit and exponent bit

of 0, and a significand of 0b 000 0000 0000 1111 0000 0000. We now know that

this will be some sort of denormalized positive number. We can find out the true

exponent by adding the bias + 1 to get the actual exponent of −126. Then, we can

evaluate the mantissa by inspecting the bits that are 1 to the right of the radix point,

and finding the corresponding negative power of two. This results in the mantissa

evaluated as 2−12 + 2−13 + 2−14 + 2−15. Combining these get the extremely small

number (−1)0 ∗ 2−126 ∗ (2−12 + 2−13 + 2−14 + 2−15)

4 Floating Point

3 More Floating Point Representation
As we saw above, not every number can be represented perfectly using floating point.

For this question, we will only look at positive numbers.

3.1 What is the next smallest number larger than 2 that can be represented completely?

For this question, you increment the number by the smallest amount possible. This

is the same as incrementing the significand by 1 at the rightmost location.

(1 + 2−23) ∗ 2 = 2 + 2−22

3.2 What is the next smallest number larger than 4 that can be represented completely?

For this question, you increment the number by the smallest amount possible. This

is the same as incrementing the significand by 1 at the rightmost location.

(1 + 2−23) ∗ 4 = 4 + 2−21

3.3 What is the largest odd number that we can represent? Hint: At what power can

we only represent even numbers?

To find the largest odd number we can represent, we want to find when odd numbers

will stop appearing. This will be when the LSB will have a step size of 2, subtracted

by 1. After this number, only even numbers can be represented in floating point.

We can think of each binary digit in the significant as corresponding to a different

power of 2 to get to a final sum. For example, 0b1011 can be evaluated as 23+21+20,

where the MSB is the 3rd bit and corresponds to 23 and the LSB is the 0th bit at 20.

We want our LSB to correspond to 21, so by counting the number of mantissa bits

(23) and including the implicit 1, we get a total exponent of 24. The smallest number

with this power would have a mantissa of 00..00, so after taking in account the

implicit 1 and subtracting, this gives 224 − 1

Floating Point 5

4 Linked List
Suppose we’ve defined a linked list struct as follows. Assume *lst points to the

first element of the list, or is NULL if the list is empty.

struct ll_node {

int first;

struct ll_node* rest;

}

4.1 Implement prepend, which adds one new value to the front of the linked list. Hint:

why use ll_node** lst instead of ll_node* lst?

1 void prepend(struct ll_node** lst, int value) {

2 struct ll_node* item = (struct ll_node*) malloc(sizeof(struct ll_node));

3 item->first = value;

4 item->rest = *lst;

5 *lst = item;

6 }

4.2 Implement free_ll, which frees all the memory consumed by the linked list.

1 void free_ll(struct ll_node** lst) {

2 if (*lst) {

3 free_ll(&((*lst)->rest));

4 free(*lst);

5 }

6 *lst = NULL; // Make writes to **lst fail instead of writing to unusable memory.

7 }

	Pre-Check
	Floating Point
	More Floating Point Representation
	Linked List

