CS 61C RISC-V Assembly, Functions
Faﬂ 2023 Discussion 4

1 Data Transfer

Using the given instructions and the sample memory array, what will happen when
the RISC-V code is executed? For load instructions (1w, 1lb, 1h), write out what
each register will store. For store instructions (sw, sh, sb), update the memory

array accordingly. Recall that RISC-V is little-endian and byte addressable.

li x5 0x00FF0000 OXFFFFFFFF
1w x6 @(x5) O.x.0‘0
addi x5 x5 4 XA
lhu x7 1(x5) OX5E
Lh X8 1(x5) 0X00FF0004 | 0x1C
1b x9 3(x6) 0x00
sh x8 2(x5) OXAB

0x01

0x00FF0000 |0x24

OxDE
OxAD
OxBE
0x00ABQ124 | OXEF

0x00000000

e Line 1: x5 will hold 0x00FF0000
e Line 2: x6 will hold 0x00AB0124, the word at the address 0x00FF0000 + 0
e Line 3: x5 will hold 0x00FF0004

e Line 4: x7 will hold 0x0000AC56. OXAC56 is the 2 bytes of data stored starting
at address 0x00FFQ004 + 1. Because the instruction is lThu, x7 will hold 0xAC56

zero-extended. Recall, registers store 32 bits

e Line 5: x8 will hold OxFFFFAC56. The instruction is lh, so @xAC56 is sign-

extended

e Line 6: x9 will hold @xFFFFFFDE. Byte 0xDE is located at address 0x00AB0124
+ 3. Register x9 will hold @xDE sign-extended.

e Line 7: The last two bytes that x8 holds are @xAC56. These two bytes will be
stored in memory starting at address 0x00FF0004 + 2

RISC-V Assembly, Functions

OXFFFFFFFF

OxAC
0x56
0x56
0xQ0FF0004 |0x1C
0x00
OxAB
0x01
0xQ0FF0000 |0x24

OxDE
OxAD
OxBE
0x00AB0124 | OXEF

0x00000000

RISC-V Assembly, Functions 3

2 Arrays in RISC-V

Comment what the following code block does. Assume that there is an array, int
arr[6] = {3, 1, 4, 1, 5, 9}, which starts at memory address @xBFFFFF0@. Let
s@ contain arr’s address @xBFFFFFQ@. You may assume integers and pointers are 4

bytes.

add to, x0, x0
loop: slti ti1, to, 6
beq t1, x0, end
slli t2, to, 2
add t3, s0, t2
1w t4, 0(t3)
sub t4, x0, t4
sw t4, 0(t3)
addi te, teo, 1
jal x@, loop
end:

Negates all elements in arr.

Conceptual check: Let a0 point to the start of an array x. 1w s@, 4(a@) will

always load x[1] into s@.

False. This only holds for data types that are four bytes wide, like int or float.
For data-types like char that are only one byte wide, 4(a@) is too large of an offset
to return the element at index 1, and will instead return a char further down the

array (or some other data beyond the array, depending on the array length).

4 RISC-V Assembly, Functions

3 Cauing Convention Practice

Function myfunc takes in two arguments: a0, al. The return value is stored in a0.
In myfunc, generate_random is called. It takes in 0 arguments and stores its return
value in a@.

myfunc:
Prologue (omitted)

addi to x0 1
slli t1 te 2
add t1 a0 t1
add s@ al x@

jal generate_random

add t1 t1 a@
add a0 t1 so

Epilogue (omitted)
ret

Which registers, if any, need to be saved on the stack in the prologue?

s@, ra. We must save all s-registers we modify. In addition, if a function contains a
function call, register ra will be overwritten when the function is called (i.e. jal ra
label). ra must be saved before a function call. It is conventional to store ra in the
prologue (rather than just before calling a function) when the function contains a

function call. myfunc contains the function call generate_random.
Which registers do we need to save on the stack before calling generate_random?
tl.

Under calling conventions, all the t-registers and a-registers may be changed by
generate_random, so we must store all of these which we need to know the value of
after the call. A total of 2 t-registers are used before calling generate_random, t0

and t1, but only t1’s value is referenced again after the function call.
Which registers need to be recovered in the epilogue before returning?

s@, ra. This mirrors what we saved in the prologue.

	Data Transfer
	Arrays in RISC-V
	Calling Convention Practice

