
CS 61C RISC-V Assembly, Functions
Fall 2023 Discussion 4

1 Data Transfer
Using the given instructions and the sample memory array, what will happen when

the RISC-V code is executed? For load instructions (lw, lb, lh), write out what

each register will store. For store instructions (sw, sh, sb), update the memory

array accordingly. Recall that RISC-V is little-endian and byte addressable.

1 li x5 0x00FF0000

2 lw x6 0(x5)

3 addi x5 x5 4

4 lhu x7 1(x5)

5 lh x8 1(x5)

6 lb x9 3(x6)

7 sh x8 2(x5)

...

0x00

0xAC

0x56

0x1C

0x00

0xAB

0x01

0x24
..

0xDE

0xAD

0xBE

0xEF
...

0xFFFFFFFF

0x00FF0004

0x00FF0000

0x00AB0124

0x00000000

• Line 1: x5 will hold 0x00FF0000

• Line 2: x6 will hold 0x00AB0124, the word at the address 0x00FF0000 + 0

• Line 3: x5 will hold 0x00FF0004

• Line 4: x7 will hold 0x0000AC56. 0xAC56 is the 2 bytes of data stored starting

at address 0x00FF0004 + 1. Because the instruction is lhu, x7 will hold 0xAC56

zero-extended. Recall, registers store 32 bits

• Line 5: x8 will hold 0xFFFFAC56. The instruction is lh, so 0xAC56 is sign-

extended

• Line 6: x9 will hold 0xFFFFFFDE. Byte 0xDE is located at address 0x00AB0124

+ 3. Register x9 will hold 0xDE sign-extended.

• Line 7: The last two bytes that x8 holds are 0xAC56. These two bytes will be

stored in memory starting at address 0x00FF0004 + 2



2 RISC-V Assembly, Functions

...

0xAC

0x56

0x56

0x1C

0x00

0xAB

0x01

0x24
..

0xDE

0xAD

0xBE

0xEF
...

0xFFFFFFFF

0x00FF0004

0x00FF0000

0x00AB0124

0x00000000



RISC-V Assembly, Functions 3

2 Arrays in RISC-V
Comment what the following code block does. Assume that there is an array, int

arr[6] = {3, 1, 4, 1, 5, 9}, which starts at memory address 0xBFFFFF00. Let

s0 contain arr’s address 0xBFFFFF00. You may assume integers and pointers are 4

bytes.

2.1 add t0, x0, x0

loop: slti t1, t0, 6

beq t1, x0, end

slli t2, t0, 2

add t3, s0, t2

lw t4, 0(t3)

sub t4, x0, t4

sw t4, 0(t3)

addi t0, t0, 1

jal x0, loop

end:

Negates all elements in arr.

2.2 Conceptual check: Let a0 point to the start of an array x. lw s0, 4(a0) will

always load x[1] into s0.

False. This only holds for data types that are four bytes wide, like int or float.

For data-types like char that are only one byte wide, 4(a0) is too large of an offset

to return the element at index 1, and will instead return a char further down the

array (or some other data beyond the array, depending on the array length).



4 RISC-V Assembly, Functions

3 Calling Convention Practice
Function myfunc takes in two arguments: a0, a1. The return value is stored in a0.

In myfunc, generate random is called. It takes in 0 arguments and stores its return

value in a0.

1 myfunc:

2 # Prologue (omitted)

3

4 addi t0 x0 1

5 slli t1 t0 2

6 add t1 a0 t1

7 add s0 a1 x0

8

9 jal generate_random

10

11 add t1 t1 a0

12 add a0 t1 s0

13

14 # Epilogue (omitted)

15 ret

3.1 Which registers, if any, need to be saved on the stack in the prologue?

s0, ra. We must save all s-registers we modify. In addition, if a function contains a

function call, register ra will be overwritten when the function is called (i.e. jal ra

label). ra must be saved before a function call. It is conventional to store ra in the

prologue (rather than just before calling a function) when the function contains a

function call. myfunc contains the function call generate random.

3.2 Which registers do we need to save on the stack before calling generate random?

t1.

Under calling conventions, all the t-registers and a-registers may be changed by

generate random, so we must store all of these which we need to know the value of

after the call. A total of 2 t-registers are used before calling generate random, t0

and t1, but only t1’s value is referenced again after the function call.

3.3 Which registers need to be recovered in the epilogue before returning?

s0, ra. This mirrors what we saved in the prologue.


	Data Transfer
	Arrays in RISC-V
	Calling Convention Practice

