
CS 61C RISC-V Assembly, Functions
Fall 2023 Discussion 4

1 Data Transfer
Using the given instructions and the sample memory array, what will happen when

the RISC-V code is executed? For load instructions (lw, lb, lh), write out what

each register will store. For store instructions (sw, sh, sb), update the memory

array accordingly. Recall that RISC-V is little-endian and byte addressable.

1 li x5 0x00FF0000

2 lw x6 0(x5)

3 addi x5 x5 4

4 lhu x7 1(x5)

5 lh x8 1(x5)

6 lb x9 3(x6)

7 sh x8 2(x5)

...

0x00

0xAC

0x56

0x1C

0x00

0xAB

0x01

0x24
..

0xDE

0xAD

0xBE

0xEF
...

0xFFFFFFFF

0x00FF0004

0x00FF0000

0x00AB0124

0x00000000



2 RISC-V Assembly, Functions

2 Arrays in RISC-V
Comment what the following code block does. Assume that there is an array, int

arr[6] = {3, 1, 4, 1, 5, 9}, which starts at memory address 0xBFFFFF00. Let

s0 contain arr’s address 0xBFFFFF00. You may assume integers and pointers are 4

bytes.

2.1 add t0, x0, x0

loop: slti t1, t0, 6

beq t1, x0, end

slli t2, t0, 2

add t3, s0, t2

lw t4, 0(t3)

sub t4, x0, t4

sw t4, 0(t3)

addi t0, t0, 1

jal x0, loop

end:

2.2 Conceptual check: Let a0 point to the start of an array x. lw s0, 4(a0) will

always load x[1] into s0.



RISC-V Assembly, Functions 3

3 Calling Convention Practice
Function myfunc takes in two arguments: a0, a1. The return value is stored in a0.

In myfunc, generate random is called. It takes in 0 arguments and stores its return

value in a0.

1 myfunc:

2 # Prologue (omitted)

3

4 addi t0 x0 1

5 slli t1 t0 2

6 add t1 a0 t1

7 add s0 a1 x0

8

9 jal generate_random

10

11 add t1 t1 a0

12 add a0 t1 s0

13

14 # Epilogue (omitted)

15 ret

3.1 Which registers, if any, need to be saved on the stack in the prologue?

3.2 Which registers do we need to save on the stack before calling generate random?

3.3 Which registers need to be recovered in the epilogue before returning?


	Data Transfer
	Arrays in RISC-V
	Calling Convention Practice

