
CS 61C Parallelism
Fall 2023 Discussion 10

1 Pre-Check
This section is designed as a conceptual check for you to determine if you conceptually

understand and have any misconceptions about this topic. Please answer true/false

to the following questions, and include an explanation:

1.1 SIMD is ideal for flow-control heavy tasks (i.e. tasks with many branches/if state-

ments).

1.2 Intel’s SIMD intrinsic instructions invoke large registers available on the architecture

in order to perform one operation on multiple values at once.

1.3 The pipelined datapath is an example of parallelism because it performs different

stages of instructions in parallel.

1.4 The most effective way of increasing performance on a modern PC is to increase its

clock speed.

1.5 In thread-level parallelism, the amount of speedup is directly proportional to the

increase in number of cores.

1.6 In thread-level parallelism, threads may run in any order and can start while other

threads are partway through their execution.

2 Parallelism

2 Write-Back Caches
When it comes to writing data to cache memory, there are multiple write policies to

consider that offer different options when building our system. Some of them you

might encounter are:

1. Write-through: In this policy, when we have a write we write to both the

cache and the memory. This is the case for every write, so the main memory

always has the updated data. This is simple to implement, but writing to

main memory every single time is slow.

2. Write-back: On a write, the data is only updated/written in the cache. The

main memory only receives the data upon eviction. This means the cache has

more up to date data most of the time. While this is faster as there is less

accesses to main memory, it is harder to implement as we have to include more

overhead, such as dirty bits and so on.

2.1 Considering the above information, lets consider a direct mapped cache with a

capacity of 16B and a block size of 4B. Lets also assume that the memory addresses

are 8 bits each. Assuming the cache is completely empty in the beginning, we make

memory accesses to the following locations:

• 0x6A, Write

• 0x0F, Write

• 0x38, Read

• 0x6B, Read

• 0x81, Read

• 0x87, Write

• 0x68, Write

• 0x6B, Read

Fill out the metadata of the cache if we use a write-back policy.

Index Valid Dirty Tag

0

1

2

3

2.2 How many times will we write to main memory in this case?

2.3 Now suppose we had a write-through policy. How many times will we write to main

memory in this case?

Parallelism 3

3 Data-Level Parallelism
The idea central to data level parallelism is vectorized calculation: applying opera-

tions to multiple items (which are part of a single vector) at the same time.

Some machines with x86 architectures have special, wider registers, that can hold

128, 256, or even 512 bits. Intel intrinsics (Intel proprietary technology) allow us to

use these wider registers to harness the power of DLP in C code.

Below is a small selection of the available Intel intrinsic instructions. All of them

perform operations using 128-bit registers. The type m128i is used when these

registers hold 4 ints, 8 shorts or 16 chars; m128d is used for 2 double precision

floats, and m128 is used for 4 single precision floats. Where you see “epiXX”, epi

stands for extended packed integer, and XX is the number of bits in the integer.

“epi32” for example indicates that we are treating the 128-bit register as a pack of 4

32-bit integers.

• __m128i _mm_set1_epi32(int i):

Set the four signed 32-bit integers within the vector to i.

• __m128i _mm_loadu_si128(__m128i *p):

Load the 4 successive ints pointed to by p into a 128-bit vector.

• __m128i _mm_mullo_epi32(__m128i a, __m128i b):

Return vector (a0 · b0, a1 · b1, a2 · b2, a3 · b3).
• __m128i _mm_add_epi32(__m128i a, __m128i b):

Return vector (a0 + b0, a1 + b1, a2 + b2, a3 + b3)

• void _mm_storeu_si128(__m128i *p, __m128i a):

Store 128-bit vector a at pointer p.

• __m128i _mm_and_si128(__m128i a, __m128i b):

Perform a bitwise AND of 128 bits in a and b, and return the result.

• __m128i _mm_cmpeq_epi32(__m128i a, __m128i b):

The ith element of the return vector will be set to 0xFFFFFFFF if the ith

elements of a and b are equal, otherwise it’ll be set to 0.

4 Parallelism

3.1 SIMD-ize the following function, which returns the product of all of the elements in

an array.

static int product_naive(int n, int *a) {

int product = 1;

for (int i = 0; i < n; i++) {

product *= a[i];

}

return product;

}

Things to think about: When iterating through a loop and grabbing elements 4 at a

time, how should we update our index for the next iteration? What if our array has

a length that isn’t a multiple of 4? What can we do to handle this tail case?

static int product_vectorized(int n, int *a) {

int result[4];

__m128i prod_v = __;

for (int i = 0; i < _____; i += ___) { // Vectorized loop

prod_v = __;

}

__mm_storeu_si128(__________________________, __________________________);

for (int i = ______________; i < ____________; i++) { // Handle tail case

result[0] *= ________________________;

}

return ___;

}

Parallelism 5

4 Thread-Level Parallelism
OpenMP provides an easy interface for using multithreading within C programs.

Some examples of OpenMP directives:

• The parallel directive indicates that each thread should run a copy of the

code within the block. If a for loop is put within the block, every thread will

run every iteration of the for loop.

#pragma omp parallel

{

...

}

NOTE: The opening curly brace needs to be on a newline or else there will be

a compile-time error!

• The parallel for directive will split up iterations of a for loop over various

threads. Every thread will run different iterations of the for loop. The

exact order of execution across all threads, as well as the number of iterations

each thread performs, are both non-deterministic, as the OpenMP library

load balances threads for performance. The following two code snippets are

equivalent.

#pragma omp parallel for

for (int i = 0; i < n; i++) {

...

}

#pragma omp parallel

{

#pragma omp for

for (int i =0; i < n; i++) { ... }

}

There are two functions you can call that may be useful to you:

• int omp_get_thread_num() will return the number of the thread executing

the code

• int omp_get_num_threads() will return the number of total hardware threads

executing the code

4.1 For each question below, state and justify whether the program is sometimes

incorrect, always incorrect, slower than serial, faster than serial, or none

of the above. Assume the number of threads can be any integer greater than 1.

Assume arr is an int[] of length n.

(a) // Set element i of arr to i

#pragma omp parallel

{

for (int i = 0; i < n; i++)

arr[i] = i;

}

(b) // Set arr to be an array of Fibonacci numbers.

arr[0] = 0;

6 Parallelism

arr[1] = 1;

#pragma omp parallel for

for (int i = 2; i < n; i++)

arr[i] = arr[i-1] + arr[i - 2];

(c) // Set all elements in arr to 0;

int i;

#pragma omp parallel for

for (i = 0; i < n; i++)

arr[i] = i;

(d) // Set element i of arr to i;

int i;

#pragma omp parallel for

for (i = 0; i < n; i++)

*arr = i;

arr++;

Parallelism 7

5 Amdahl’s Law
In attempting to parallelize a program, the overall performance speedup will always

be limited by the fraction of the program that cannot be sped up. This overall

speedup can be formulated by Amdahl’s Law, which states that

Speedup =
1

(1− F) + F
S

Speedup refers to the theoretical speedup of the program compared to its naive

implementation. Note that Speedup > 1 since we’re making our program faster

than the original.

F refers to the fraction of the program that can be optimized;

S is the speedup factor for how much that portion of the program can be optimized

by, where (S > 1)

8 Parallelism

5.1 Derive Amdahl’s Law using the ratio: Speedup = tnaive/toptimized

5.2 Assuming we have infinite threads and resources, what would our overall speedup

be for a program with some fraction of our code that can be parallelized F?

rin

5.3 You write code that will search for the phrases “Hello Sean”, “Hello Jon”, “Hello

Dan”, “Hello Man”, “Bora is the Best!” in text files. With some analysis, you

determine you can speed up 40% of the execution by a factor of 2 when parallelizing

your code. What is the true speedup?

5.4 You run a profiling program on a different program to find out what percent of time

within the program each function takes. You get the following results:

Function % Time

f 30%

g 10%

h 60%

(a) Assuming that each of these functions can be parallelized by the same speedup

factor, which one, if parallelized, would cause the most speedup for the entire

program?

(b) What speedup would you get if you parallelized just this function with 8 threads?

Assume that work is distributed evenly across threads and there is no overhead

for parallelization.

	Pre-Check
	Write-Back Caches
	Data-Level Parallelism
	Thread-Level Parallelism
	Amdahl's Law

