
CS 61C OS, Virtual Memory, & I/O
Fall 2023 Discussion 12

1 Precheck
This section is designed as a conceptual check for you to determine if you conceptually

understand and have any misconceptions about this topic. Please answer true/false

to the following questions, and include an explanation:

1.1 Responsibilities of the OS include loading programs, handling services, combining

programs together for efficiency.

1.2 The purpose of supervisor mode is to isolate certain instructions and routines from

user programs.

1.3 An operating system uses context switches to allow for multiple processes to run

simultaneously across multiple CPUs.

1.4 Having virtual memory helps protect a system.

1.5 The virtual address space is limited by the amount of memory in the system.

1.6 The virtual and physical page number must be the same size.

1.7 If a page table entry can not be found in the TLB, then a page fault has occurred.



2 OS, Virtual Memory, & I/O

1.8 For I/O, polling is better than interrupts when I/O events occur regularly at a fast

rate.

1.9 Memory-mapped IO only works with polling.

2 Addressing
Virtual Address (VA) What your program uses

Virtual Page Number (VPN) Page Offset

Physical Address (PA) What actually determines where in memory to go

Physical Page Number (PPN) Page Offset

For example, with 4 KiB pages and byte addresses, there are 12 page offset bits

since 4 KiB = 212 B = 4096 B.

Pages
A chunk of memory or disk with a set size. Addresses in the same virtual page map

to addresses in the same physical page. The page table determines the mapping.

Valid Dirty Permission Bits PPN

— Page entry (VPN: 0) —

— Page entry (VPN: 1) —

Each stored row of the page table is called a page table entry. There are 2VPN bits

such entries in a page table. Say you have a VPN of 5 and you want to use the page

table to find what physical page it maps to; you’ll check the 5th (0-indexed) page

table entry. If the valid bit is 1, then that means that the entry is valid (in other

words, the physical page corresponding to that virtual page is in main memory as

opposed to being only on disk) and therefore you can get the PPN from the entry

and access that physical page in main memory.



OS, Virtual Memory, & I/O 3

The page table is stored in memory: the OS sets a register (the Page Table Base

Register) telling the hardware the address of the first entry of the page table. If you

write to a page in memory, the processor updates the “dirty” bit in the page table

entry corresponding to that page, which lets the OS know that updating that page

on disk is necessary (remember: main memory contains a subset of what’s on disk).

This is a similar concept as having a dirty bit for each cache block in a write-back

cache. Each process gets its own illusion of full memory to work with, and therefore

its own page table.

Protection Fault The page table entry for a virtual page has permission bits that

prohibit the requested operation. This is how a segmentation fault occurs.

Page Fault The page table entry for a virtual page has its valid bit set to false.

This means that the entry is not in memory. For simplicity, we will assume

the address causing the page fault is a valid request, and maps to a page that

was swapped from memory to disk. Since the requested address is valid, the

operating system checks if the page exists on disk. If so, we transfer the page

to memory (evicting another page if necessary), and add the mapping to the

page table and the translation lookaside buffer (TLB).

Translation Lookaside Buffer
A cache for the page table. Each block is a single page table entry. If an entry is

not in the TLB or the valid bit = 0, it’s a TLB miss. Typically fully associative:

TLB Valid Tag (VPN)
Page Table Entry

Page Dirty Permission Bits PPN

— TLB entry —

— TLB entry —

2.1 What are three specific benefits of using virtual memory?

2.2 What should happen to the TLB when a new value is loaded into the page table

address register (i.e. we are switching page tables to those for another process)?

3 VM Access Patterns
3.1 A processor has 16-bit addresses, 256 byte pages, and an 8-entry fully associative

TLB with LRU replacement (the LRU field is 3 bits and encodes the order in which



4 OS, Virtual Memory, & I/O

pages were accessed, 0 being the most recent). Suppose RAM (main memory) has

12 bit addresses. At some time instant, the TLB for the current process is the

initial state given in the table below, and we have one free physical page = 0x7.

Suppose the least recently used physical page is 0x9. Assume that all current page

table entries are in the initial TLB. Assume also that all pages can be read from

and written to. Fill in the final state of the TLB according to the following access

pattern, and also write out the physical addresses corresponding to each location

accessed. Indicate TLB hit or miss (if it is a TLB miss, indicate whether there is a

page fault). Update the page table as needed.

Access Pattern

1. 0x11f0 (Read)

2. 0x1301 (Write)

3. 0x20ae (Write)

4. 0x2332 (Read)

5. 0x20ff (Read)

6. 0x3415 (Write)

Initial TLB

VPN PPN Valid Dirty LRU

0x01 0x1 1 1 0

0x00 0x0 0 0 7

0x10 0x3 1 1 1

0x20 0x2 1 0 5

0x22 0xb 0 0 7

0x11 0x4 1 0 4

0xac 0x5 1 1 2

0xff 0xf 1 0 3

Initial Page Table

This page table does is simplified and includes the status bits valid and dirty. LRU

is omitted for simplicity.

VPN PPN Valid Dirty

0x00 0x0 0 0

0x01 0x1 1 1

... ... ... ...

0x13 0xc 0 0

... ... ... ...

0x23 0x8 1 0

... ... ... ...

0x34 0xd 0 0

... ... ... ...

0xff 0xf 1 0



OS, Virtual Memory, & I/O 5

How many bits are the offset, VPN, and PPN?



6 OS, Virtual Memory, & I/O

4 Polling & Interrupts
4.1 Fill out this table that compares polling and interrupts.

Operation Definition Pro/Good for Con

Polling

Interrupts



OS, Virtual Memory, & I/O 7

5 Memory Mapped I/O
5.1 For this question, the following addresses correspond to registers in some I/O devices

and not regular user memory.

• 0xFFFF0000—Receiver Control: LSB is the ready bit, there may be other bits

set that we don’t need right now.

• 0xFFFF0004—Receiver Data: Received data stored at lowest byte.

• 0xFFFF0008—Transmitter Control: LSB is the ready bit, there may be other

bits set that we don’t need right now.

• 0xFFFF000C—Transmitter Data: Transmitted data stored at lowest byte.

Recall that receiver will only have data for us when the corresponding ready bit

is 1, and that we can only write data to the transmitter when its ready bit is 1.

Write RISC-V code that reads byte from the receiver and writes that byte to the

transmitter (busy-waiting if necessary).


	Precheck
	Addressing
	VM Access Patterns
	Polling & Interrupts
	Memory Mapped I/O

