
CS 61C ECC, RAID, MapReduce,
WSC

Fall 2023 Discussion 13

1 Precheck
This section is designed as a conceptual check for you to determine if you conceptually

understand and have any misconceptions about this topic. Please answer true/false

to the following questions, and include an explanation:

1.1 MapReduce is a more general programming model than Spark since it is lower level.

False. While Spark is higher level, you can still do basic map-reduce with Spark. It

is easier to express more complex computations in Spark. For more information on

higher level vs. lower level, visit https://en.wikipedia.org/wiki/High- and low-level

1.2 If a data center has a higher PUE, then it is more energy-efficient.

False. The ideal and minimum value of PUE is 1.0.

1.3 We can improve the availability of a service either by increasing MTTF or decreasing

MTTR.

True. Increasing MTTF makes the system fail less often, while lowering MTTR

makes the downtime shorter if it does fail, both improving availability.

1.4 Hamming codes can detect any type of data corruption.

False. They cannot detect all three bit errors.

1.5 All RAID levels improve reliability.

False. Raid 0 is just storing data across all disks, which doesn’t improve reliability.

2 ECC, RAID, MapReduce, WSC

2 Hamming ECC
Recall the basic structure of a Hamming code. We start out with some bitstring,

and then add parity bits at the indices that are powers of two (1, 2, 4, etc.). We

don’t assign values to these parity bits yet. Note that the indexing convention

used for Hamming ECC is different from what you are familiar with. In

particular, the 1 index represents the MSB, and we index from left-to-right. The ith

parity bit P{i} covers the bits in the new bitstring where the index of the bit under

the aforementioned convention, j, has a 1 at the same position as i when represented

as binary. For instance, 4 is 0b100 in binary. The integers j that have a 1 in the

same position when represented in binary are 4, 5, 6, 7, 12, 13, etc. Therefore, P4

covers the bits at indices 4, 5, 6, 7, 12, 13, etc. A visual representation of this is:

Source: https://en.wikipedia.org/wiki/Hamming code

2.1 How many bits do we need to add to 00112 to allow single error correction?

m parity bits can cover bits 1 through 2m − 1, of which 2m −m− 1 are data bits.

Thus, to cover 4 data bits, we need 3 parity bits.

2.2 Which locations in 00112 would parity bits be included?

Using P to represent parity bits: PP0P0112

2.3 Which bits does each parity bit cover in 00112?

Parity bit 1: 1, 3, 5, 7

Parity bit 2: 2, 3, 6, 7

Parity bit 3: 4, 5, 6, 7

2.4 Write the completed coded representation for 00112 to enable single error correction.

Assume that we set the parity bits so that the bits they cover have even parity (the

number of the covered bits that are 1 is even).

10000112

2.5 How can we enable an additional double error detection on top of this?

Add an additional parity bit over the entire sequence. If after correcting the message

using the original Hamming code, we have a message whose total parity doesn’t

match the additional parity bit, then we have detected a double error.

2.6 Find the original bits given the following SEC Hamming Code: 01101112.

https://en.wikipedia.org/wiki/Hamming_code

ECC, RAID, MapReduce, WSC 3

Parity group 1: error

Parity group 2: okay

Parity group 4: error

To find the incorrect bit’s index, we simply sum up the indices of all the erroneous

bits.

Incorrect bit: 1 + 4 = 5, change bit 5 from 1 to 0: 01100112

01100112 → 10112

2.7 Find the original bits given the following SEC Hamming Code: 10001002.

Parity group 1: okay

Parity group 2: okay

Parity group 4: error

Incorrect bit: 4, change bit 4 from 0 to 1: 10011002

10011002 → 01002

4 ECC, RAID, MapReduce, WSC

3 RAID & Dependability
3.1 Fill out the following table on how each RAID level lays out data for redundancy,

as well as their pros and cons:

Configuration Pro/Good for Con/Bad for

RAID 0
Split data across multiple

disks

No overhead, fast read /

write

Reliability

RAID 1
Mirrored Disks: Extra

copy of data

Fast read / write, Fast re-

covery

High overhead → expen-

sive

RAID 4
Block-level striping with

single parity disk.

Higher throughput for

small reads

Still slow small writes (A

single check disk is a bot-

tleneck)

RAID 5
Block-level striping, par-

ity distributed across

disks.

Higher throughput of

small writes

The time to repair a disk

is so long that another

disk might fail in the

meantime.

RAID 6
Block-level striping, par-

ity distributed across

disks with two parity

blocks per set.

Supports up to two con-

current disk failures.

More overhead needed

than RAID 5.

3.2 Consider a server system that takes 95 days on average to fail, and 5 days on average

to repair. What percent of time should we expect the server system to be available

for use (what is the availability)?

95%

Mean Time to Failure (MTTF): 95 days

Mean Time to Repair (MTTR): 5 days

Availability = MTTF / (MTTF + MTTR) = 95 / (95 + 5) = 0.95 = 95%

ECC, RAID, MapReduce, WSC 5

4 MapReduce
For each problem below, write pseudocode to complete the implementations using

the MapReduce model. Tips:

• The input to each MapReduce job is given by the signature of map().

• emit(key k, value v) outputs the key-value pair (k, v).

• for var in list can be used to iterate through Iterables or you can call

the hasNext() and next() functions.

• Usable data types: int, float, String. You may also use lists and custom

data types composed of the aforementioned types.

• intersection(list1, list2) returns a list of the common elements of list1,

list2.

4.1 Given the student’s name and course taken, output their name and total GPA.

Declare any custom data types here:

CourseData:

int courseID

float studentGrade // a number from 0-4

1 map(________________, ________________):

map(String student, CourseData value):

emit(student, value.studentGrade)

1 reduce(________________, ________________):

reduce(String key, Iterable<float> values):

totalPts = 0

totalClasses = 0

for grade in values:

totalPts += grade

totalClasses += 1

emit(key, totalPts / totalClasses)

6 ECC, RAID, MapReduce, WSC

4.2 You are given a list of tuples containing people’s unique int ID and a list of the IDs

of their friends (i.e. each tuple in the list gives the list of friends for different person).

Compute the list of mutual friends between each pair of friends in a social network,

including the pair themselves. You have access to the intersection function, which

takes in two lists and finds the set of elements that appear in both lists.

FriendPair:

int friendOne

int friendTwo

1 map(tuple<int, list<int>> info):

map(tuple<int, list<int>> info):

personID, friendIDs = info

for fID in friendIDs:

if (personID < fID):

friendPair = (personID, fID)

else:

friendPair = (fID, personID)

emit(friendPair, friendIDs)

1 reduce(________________, ________________):

reduce(FriendPair key,Iterable<list<int>> values):

Note: values only has two elements,

once for each person in the FriendPair.

mutualFriends = intersection(

values[0], values[1]

)

emit(key, mutualFriends)

5 Warehouse Scale Computing
Sources speculate Google has over 1 million servers. Assume it has exactly 1 million

servers, which draw an average of 200W each, the PUE is 1.5, and that Google pays

an average of 6 cents per kilowatt-hour for data center electricity.

5.1 Estimate Google’s annual power bill for its data centers.

1.5 · 106 servers · 0.2kW/server · $0.06/kW-hr · 8760 hrs/yr ≈ $157.68 M/year

5.2 Google reduced the PUE of a 50,000-machine data center from 1.5 to 1.25 without

decreasing the power supplied to the servers. What’s the cost savings per year?

PUE = Total building power
IT equipment power =⇒ Savings ∝ (PUEold−PUEnew)∗IT equipment power

(1.5−1.25) ·50000 servers ·0.2kW/server ·$0.06/kW-hr ·8760hrs/yr ≈ $1.314 M/year

	Precheck
	Hamming ECC
	RAID & Dependability
	MapReduce
	Warehouse Scale Computing

