
Memory Hierarchy, Fully Associative Caches

Instructor: Nick Riasanovsky

Review

• Hazards reduce effectiveness of pipelining
– Cause stalls/bubbles

• Structural Hazards
– Conflict in use of datapath component

• Data Hazards
– Need to wait for result of a previous instruction

• Control Hazards
– Address of next instruction uncertain/unknown

– Use branch prediction to avoid hazards
7/12/2018 CS61C Su18 - Lecture 14 2

Great Idea #3: Principle of Locality/
Memory Hierarchy

7/12/2018 CS61C Su18 - Lecture 14 3

4

Agenda

• Memory Hierarchy Overview

• Administrivia

• Fully Associative Caches

• Cache Reads and Writes

7/12/2018 CS61C Su18 - Lecture 14 5

Storage in a Computer

• Processor
– Holds data in register files (~ 100 B)

– Registers accessed on sub-nanosecond timescale

• Memory (“main memory”)
– More capacity than registers (~ GiB)

– Access time ~ 50-100 ns

• Hundreds of clock cycles per memory access?!

7/12/2018 CS61C Su18 - Lecture 14 6

Processor-Memory Gap

7/12/2018 CS61C Su18 - Lecture 14 7

“Moore’s Law”

Processor-Memory
Performance Gap
(grows 50%/year)

1989 first Intel CPU with cache on chip
1998 Pentium III has two cache levels on chip

µProc
55%/year
(2X/1.5yr)

DRAM
7%/year

(2X/10yrs)

8

Library Analogy
• Writing a report on a specific topic
– e.g. history of the computer (your internet is out)

• While at library, take books from shelves and put
them on shelf above your desk

• If need more, go get them and bring back to shelf
– Don’t return earlier books since might still need them
– Limited space on shelf; which books do we keep?

• You hope these ~10 books on shelf enough to write
report
– Only 0.00001% of the books in UC Berkeley libraries!

7/12/2018 CS61C Su18 - Lecture 14 9

10

Principle of Locality (1/3)

• Principle of Locality: Programs access only a
small portion of the full address space at any
instant of time
– Recall: Address space holds both code and data

– Loops and sequential instruction execution mean
generally localized code access

– Stack and Heap try to keep your data together

– Arrays and structs naturally group data you would
access together

7/12/2018 CS61C Su18 - Lecture 14 11

Principle of Locality (2/3)

• Temporal Locality (locality in time)
– Go back to the same book on desk multiple times

– If a memory location is referenced then it will
tend to be referenced again soon

• Spatial Locality (locality in space)
– When go to shelves, grab many books on

computers since related books are stored
together

– If a memory location is referenced, the locations
with nearby addresses will tend to be referenced
soon7/12/2018 CS61C Su18 - Lecture 14 12

Principle of Locality (3/3)

• We exploit the principle of locality in
hardware via a memory hierarchy where:
– Levels closer to processor are faster

(and more expensive per bit so smaller)

– Levels farther from processor are larger
(and less expensive per bit so slower)

• Goal: Create the illusion of memory being
almost as fast as fastest memory and almost
as large as biggest memory of the hierarchy

7/12/2018 CS61C Su18 - Lecture 14 13

Memory Hierarchy Schematic

7/12/2018 CS61C Su18 - Lecture 14 14

Smaller,
Faster,

More expensive

Bigger,
Slower,

Cheaper

Processor

Level 1

Level 2

Level n

Level 3

. . .

Lo
w

er

Hig
her

Cache Concept

• Memory Cache—holds a copy of a subset of main
memory
– We often use $ (“cash”) to abbreviate cache (e.g. D$ =

Data Cache, L1$ = Level 1 Cache)

• Modern processors have separate caches for
instructions and data, as well as several levels of
caches implemented in different sizes

• Implemented with same IC processing technology
as CPU and integrated on-chip – faster but more
expensive than main memory

7/12/2018 CS61C Su18 - Lecture 14 15

Memory Transfer in the Hierarchy

Inclusive: data in L1$
⊂ data in L2$
⊂ data in MM
⊂ data in SM

7/12/2018 CS61C Su18 - Lecture 14 16

Processor

L1$

L2$

Secondary Memory

Main Memory

Block: Unit of
transfer between
memory and cache

4-8 bytes (word)

16-128 bytes (block)

4,096+ bytes (page)

8-32 bytes (block)

Managing the Hierarchy

• registers ↔ memory
– By compiler (or assembly level programmer)

• cache ↔ main memory
– By the cache controller hardware

• main memory ↔ disks (secondary storage)
– By the OS (virtual memory, which is a later topic)

– Virtual to physical address mapping assisted by
the hardware (TLB)

– By the programmer (files)

7/12/2018 CS61C Su18 - Lecture 14 17

We are here

Typical Memory Hierarchy

7/12/2018 CS61C Su18 - Lecture 14 18

On-Chip Components

Second
Level
Cache

(SRAM)

Control

Datapath

Secondar
y

Memory
(Disk

or Flash)

R
egFile

Main
Memory
(DRAM)D

ata
C

ach
e

In
str

C
ach

e
Cost/bit: highest lowest

Speed: ½’s 1’s 10’s 100’s 1,000,000’s
(cycles)

Size: 100’s 10K’s M’s G’s T’s
(bytes)

Memory Hierarchy Technologies

• Caches use static RAM (SRAM)
+ Fast (typical access times of 0.5 to 2.5 ns)

+ Higher power, expensive
($2000 to $4000 per GB in 2011)

+ Static: content will last as long as power is on

• Main memory uses dynamic RAM (DRAM)
+ Lower power, cheaper

($20 to $40 per GB in 2011)

+ Slower (typical access times of 50 to 70 ns)

+ Dynamic: needs to be “refreshed” regularly (~ every 8 ms)

7/12/2018 CS61C Su18 - Lecture 14 19

Review So Far

• Goal: present the programmer with ≈ as
much memory as the largest memory at
≈ the speed of the fastest memory

• Approach: Memory Hierarchy
– Successively higher levels contain

“most used” data from lower levels

– Exploits temporal and spatial locality

– We will start by studying caches

7/12/2018 CS61C Su18 - Lecture 14 20

Agenda

• Memory Hierarchy Overview

• Administrivia

• Fully Associative Caches

• Cache Reads and Writes

7/12/2018 CS61C Su18 - Lecture 14 21

Administrivia

• Sooo much new content, push through!
– Don’t fall behind now

• Proj2-2 due 7/13, HW3/4 due 7/16
– 2-2 autograder being run

• Project 3 released tonight after lab!
– Dependent on lab 6

• Supplementary review sessions starting
– First one this Sat. (7/14) 12-2p, Cory 540AB
– Check out Piazza for more info

227/12/2017 CS61C Su18 - Lecture 13

Agenda

• Memory Hierarchy Overview

• Administrivia

• Fully Associative Caches

• Cache Reads and Writes

7/12/2018 CS61C Su18 - Lecture 14 23

Cache Management

• What is the overall organization of blocks we
impose on our cache?
– Where do we put a block of data from memory?

– How do we know if a block is already in cache?

– How do we quickly find a block when we need it?

– When do we replace something in the cache?

7/12/2018 CS61C Su18 - Lecture 14 24

General Notes on Caches (1/4)

• Recall: Memory is byte-addressed

• We haven’t specified the size of our “blocks,” but
will usually be multiple of word size (32-bits)
– How do we access individual words or bytes within a

block?

• Cache is smaller than memory
– Can’t fit all blocks at once, so multiple blocks in

memory must map to the same slot in cache

– Need some way of identifying which memory block is
currently in each cache slot

7/12/2018 CS61C Su18 - Lecture 14 25

 OFFSET

INDEX

TAG

6/29/2017 CS61C Su18 - Lecture 8 26

S Exponent Significand
31 30 23 22

1 bit 8 bits 23 bits

Tag Index Offset
31

T I O

0

0

0

opcodeimmediate
31

lui rd
611

General Notes on Caches (2/4)

• Recall: hold subset of memory in a place
that’s faster to access
– Return data to you when you request it

– If cache doesn’t have it, then fetches it for you

• Cache must be able to check/identify its
current contents

• What does cache initially hold?
– Garbage! Cache considered “cold”

– Keep track with Valid bit
7/12/2018 CS61C Su18 - Lecture 14 27

General Notes on Caches (3/4)

• Effect of block size (K Bytes):
– Spatial locality dictates our blocks consist of

adjacent bytes, which differ in address by 1

– Offset field: Lowest bits of memory address can
be used to index to specific bytes within a block
• Block size needs to be a power of two (in bytes)

• One way to compute the offset field is to mask out the
Tag and Index bits

7/12/2018 CS61C Su18 - Lecture 14 28

Tag Index Offset
31

T I O

0

General Notes on Caches (4/4)

• Effect of cache size (C Bytes):
– “Cache Size” refers to total stored data

– Determines number of blocks the cache can hold
(C/K blocks)

– Tag field: Leftover upper bits of memory address
determine which portion of memory the block
came from (identifier)

7/12/2018 CS61C Su18 - Lecture 14 29

30

Question:
You are given a 256 B cache that holds 8 data
blocks. We are working on a 10-bit byte-
addressed machine.
Which statement is false?

(A) Each data block holds 32 bytes of data

(B) Our tag can be more than 5 bits

(C) All of main memory could fit into four caches

(D) Only one valid copy of a block can be in the
cache at any point in time

Fully Associative Caches

• Each memory block can map anywhere in the
cache (fully associative)
– Most efficient use of space

– Least efficient to check

• To check a fully associative cache:
1) Look at ALL cache slots in parallel

2) If Valid bit is 0, then ignore

3) If Valid bit is 1 and Tag matches, then return that
data

7/12/2018 CS61C Su18 - Lecture 14 31

Fully Associative Cache
Address Breakdown

• Memory address fields:

• Meaning of the field sizes:
– Offset bits ↔ 2Offset bytes per block

= 2Offset-2 words per block

– Tag bits = A – Offset, where A = # of address bits
(A = 32 here)

7/12/2018 CS61C Su18 - Lecture 14 32

Tag Offset
31 0

Tag bits Offset bits

33

Question:
You are given a 32 bit byte addressed machine.
The offset field is 5 bits, but you decide to use
only 26 bits to represent the tag. Which of the
following statements is true?

(A) Each block can contain more data than if you
used all 27 bits.

(B) More bits will need to be stored by the cache

(C) Fewer blocks can be stored in the cache than
if you used all 27 bits.

(D) You cannot properly identify what is data
block is in the cache.

Caching Terminology (1/2)

• When reading memory, 2 things can happen:
– Cache hit:

Cache holds a valid copy of the block, so return
the desired data

– Cache miss:
Cache does not have desired block, so fetch from
memory and put in empty (invalid) slot

• If cache is full you must discard one valid block
and replace it with desired data

7/12/2018 CS61C Su18 - Lecture 14 34

Block Replacement Policies

• Which block do you replace?
– Use a cache block replacement policy

– There are many (most are intuitively named), but
we will just cover a few in this class

http://en.wikipedia.org/wiki/Cache_algorithms#Examples

• Of note:
– Random Replacement

– Least Recently Used (LRU): requires some
“management bits”

7/12/2018 CS61C Su18 - Lecture 14 35

http://en.wikipedia.org/wiki/Cache_algorithms

Understanding LRU

• The BEST replacement policy we could have is
to replace data we will use farthest in the
future
– Either never use again or use later than

everything else

• Unfortunately this isn’t possible
• Instead we approximate using LRU
– Replace block we used least recently first in the

hopes we will use it again later than all other
blocks

36

Caching Terminology (2/2)

• How effective is your cache?
– Want to max cache hits and min cache misses
– Hit rate (HR): Percentage of memory accesses in a

program or set of instructions that result in a cache hit
– Miss rate (MR): Like hit rate, but for cache misses

MR = 1 – HR

• How fast is your cache?
– Hit time (HT): Time to access cache (including Tag

comparison)
– Miss penalty (MP): Time to replace a block in the

cache from a lower level in the memory hierarchy

7/12/2018 CS61C Su18 - Lecture 14 37

Fully Associative Cache
Implementation

• What’s actually in the cache?
– Each cache slot contains the actual data block

(8 × K = 8 × 2Offset bits)
– Tag field of address as identifier (Tag bits)
– Valid bit (1 bit): Whether cache slot was filled in
– Any necessary replacement management bits

(“LRU bits” – variable # of bits stored in each row)

• Total bits in cache
= # slots × (8×K + Tag + 1 + ?)
= (C/K) × (8×2Offset + Tag + 1 + ?) bits

7/12/2018 CS61C Su18 - Lecture 14 38

FA Cache Examples (1/4)

• Cache parameters:
– Fully associative, address space of 64B, block size

of 1 word, cache size of 4 words, LRU (2 bits)

• Address Breakdown:
– 1 word = 4 bytes, so Offset = log

2
(4) = 2

– A = log
2
(64) = 6 bits, so Tag = 6 – 2 = 4

• Bits in cache
= (4/1) × (8×22 + 4 + 1 + 2) = 156 bits

7/12/2018 CS61C Su18 - Lecture 14 39

XX XX XX
Block address

Memory Addresses:

FA Cache Examples (1/4)

• Cache parameters:
– Fully associative, address space of 64B, block size

of 1 word, cache size of 4 words, LRU (2 bits)
– Offset – 2 bits, Tag – 4 bits

• 39 bits per slot, 156 bits to implement with LRU

7/12/2018 CS61C Su18 - Lecture 14 40

V Tag 00 01 10 11

X XXXX 0x?? 0x?? 0x?? 0x??

X XXXX 0x?? 0x?? 0x?? 0x??

X XXXX 0x?? 0x?? 0x?? 0x??

X XXXX 0x?? 0x?? 0x?? 0x??

Block Size

Slot

0

1

2

3

LRU

XX

XX

XX

XX Cache Size

Offset

FA Cache Examples (2/4)
1) Consider the sequence of memory address accesses

 0 2 4 10 20 16 0 2

7/12/2018 CS61C Su18 - Lecture 14 41

0

4

miss

miss

Starting with a cold cache:

0 0000 0x?? 0x?? 0x?? 0x??
0 0000 0x?? 0x?? 0x?? 0x??
0 0000 0x?? 0x?? 0x?? 0x??
0 0000 0x?? 0x?? 0x?? 0x??

1 0000 M[0] M[1] M[2] M[3]
0 0000 0x?? 0x?? 0x?? 0x??
0 0000 0x?? 0x?? 0x?? 0x??
0 0000 0x?? 0x?? 0x?? 0x??

1 0000 M[0] M[1] M[2] M[3]
0 0000 0x?? 0x?? 0x?? 0x??
0 0000 0x?? 0x?? 0x?? 0x??
0 0000 0x?? 0x?? 0x?? 0x??

1 0000 M[0] M[1] M[2] M[3]
0 0000 0x?? 0x?? 0x?? 0x??
0 0000 0x?? 0x?? 0x?? 0x??
0 0000 0x?? 0x?? 0x?? 0x??

2 hit

1 0000 M[0] M[1] M[2] M[3]
1 0001 M[4] M[5] M[6] M[7]
0 0000 0x?? 0x?? 0x?? 0x??
0 0000 0x?? 0x?? 0x?? 0x??

1 0000 M[0] M[1] M[2] M[3]
1 0001 M[4] M[5] M[6] M[7]
0 0000 0x?? 0x?? 0x?? 0x??
0 0000 0x?? 0x?? 0x?? 0x??

10 miss
1 0000 M[0] M[1] M[2] M[3]
1 0001 M[4] M[5] M[6] M[7]
1 0010 M[8] M[9] M[10] M[11]
0 0000 0x?? 0x?? 0x?? 0x??

000000 000010

001010000100

FA Cache Examples (2/4)
1) Consider the sequence of memory address accesses

 0 2 4 10 20 16 0 2

7/12/2018 CS61C Su18 - Lecture 14 42

20

0

miss

miss

Starting with a cold cache:

• 8 requests, 6 misses – HR of 25%

1 0000 M[0] M[1] M[2] M[3]
1 0001 M[4] M[5] M[6] M[7]
1 0010 M[8] M[9] M[10] M[11]
0 0000 0x?? 0x?? 0x?? 0x??

1 0000 M[0] M[1] M[2] M[3]
1 0001 M[4] M[5] M[6] M[7]
1 0010 M[8] M[9] M[10] M[11]
1 0101 M[20] M[21] M[22] M[23]

1 0000 M[0] M[1] M[2] M[3]
1 0001 M[4] M[5] M[6] M[7]
1 0010 M[8] M[9] M[10] M[11]
1 0101 M[20] M[21] M[22] M[23]

1 0100 M[16] M[17] M[18] M[19]
1 0001 M[4] M[5] M[6] M[7]
1 0010 M[8] M[9] M[10] M[11]
1 0101 M[20] M[21] M[22] M[23]

16 miss

1 0100 M[16] M[17] M[18] M[19]
1 0000 M[0] M[1] M[2] M[3]
1 0010 M[8] M[9] M[10] M[11]
1 0101 M[20] M[21] M[22] M[23]

2 hit

M H M M
010100 010000

000010000000

M M M H

FA Cache Examples (3/4)
2) Same requests, but reordered

 0 2 2 0 16 20 10 4

7/12/2018 CS61C Su18 - Lecture 14 43

0

2

miss

hit

Starting with a cold cache:

1 0000 M[0] M[1] M[2] M[3]
0 0000 0x?? 0x?? 0x?? 0x??
0 0000 0x?? 0x?? 0x?? 0x??
0 0000 0x?? 0x?? 0x?? 0x??

1 0000 M[0] M[1] M[2] M[3]
0 0000 0x?? 0x?? 0x?? 0x??
0 0000 0x?? 0x?? 0x?? 0x??
0 0000 0x?? 0x?? 0x?? 0x??

1 0000 M[0] M[1] M[2] M[3]
0 0000 0x?? 0x?? 0x?? 0x??
0 0000 0x?? 0x?? 0x?? 0x??
0 0000 0x?? 0x?? 0x?? 0x??

2 hit

1 0000 M[0] M[1] M[2] M[3]
0 0000 0x?? 0x?? 0x?? 0x??
0 0000 0x?? 0x?? 0x?? 0x??
0 0000 0x?? 0x?? 0x?? 0x??

0 hit

000000 000010

000000000010

1 0000 M[0] M[1] M[2] M[3]
1 0100 M[16] M[17] M[18] M[19]
1 0101 M[20] M[21] M[22] M[23]
1 0010 M[8] M[9] M[10] M[11]

1 0000 M[0] M[1] M[2] M[3]
1 0100 M[16] M[17] M[18] M[19]
1 0101 M[20] M[21] M[22] M[23]
0 0000 0x?? 0x?? 0x?? 0x??

1 0000 M[0] M[1] M[2] M[3]
1 0100 M[16] M[17] M[18] M[19]
0 0000 0x?? 0x?? 0x?? 0x??
0 0000 0x?? 0x?? 0x?? 0x??

FA Cache Examples (3/4)
2) Same requests, but reordered

 0 2 2 0 16 20 10 4

7/12/2018 CS61C Su18 - Lecture 14 44

16

10

miss

miss

Starting with a cold cache:

• 8 requests, 5 misses – ordering matters!

1 0000 M[0] M[1] M[2] M[3]
0 0000 0x?? 0x?? 0x?? 0x??
0 0000 0x?? 0x?? 0x?? 0x??
0 0000 0x?? 0x?? 0x?? 0x??

1 0000 M[0] M[1] M[2] M[3]
1 0100 M[16] M[17] M[18] M[19]
0 0000 0x?? 0x?? 0x?? 0x??
0 0000 0x?? 0x?? 0x?? 0x??

1 0000 M[0] M[1] M[2] M[3]
1 0100 M[16] M[17] M[18] M[19]
1 0101 M[20] M[21] M[22] M[23]
0 0000 0x?? 0x?? 0x?? 0x??

1 0000 M[0] M[1] M[2] M[3]
1 0100 M[16] M[17] M[18] M[19]
1 0101 M[20] M[21] M[22] M[23]
1 0010 M[8] M[9] M[10] M[11]

20 miss

1 0000 M[0] M[1] M[2] M[3]
1 0100 M[16] M[17] M[18] M[19]
1 0101 M[20] M[21] M[22] M[23]
1 0010 M[8] M[9] M[10] M[11]

4 miss

M H H H
010000 010100

000100001010

FA Cache Examples (4/4)
3) Original sequence, but double block size

 0 2 4 10 20 16 0 2

7/12/2018 CS61C Su18 - Lecture 14 45

0
miss

Starting with a cold cache:

0 000 0x?? 0x?? 0x?? 0x?? 0x?? 0x?? 0x?? 0x??
0 000 0x?? 0x?? 0x?? 0x?? 0x?? 0x?? 0x?? 0x??

1 000 M[0] M[1] M[2] M[3] M[4] M[5] M[6] M[7]
0 000 0x?? 0x?? 0x?? 0x?? 0x?? 0x?? 0x?? 0x??

1 000 M[0] M[1] M[2] M[3] M[4] M[5] M[6] M[7]
0 000 0x?? 0x?? 0x?? 0x?? 0x?? 0x?? 0x?? 0x??

1 000 M[0] M[1] M[2] M[3] M[4] M[5] M[6] M[7]
0 000 0x?? 0x?? 0x?? 0x?? 0x?? 0x?? 0x?? 0x??

2

4

hit

hit

10
miss

1 000 M[0] M[1] M[2] M[3] M[4] M[5] M[6] M[7]
0 000 0x?? 0x?? 0x?? 0x?? 0x?? 0x?? 0x?? 0x??

1 000 M[0] M[1] M[2] M[3] M[4] M[5] M[6] M[7]
1 001 M[8] M[9] M[10] M[11] M[12] M[13] M[14] M[15]

000000

000010

000100

001010

FA Cache Examples (4/4)
3) Original sequence, but double block size

 0 2 4 8 20 16 0 2

7/12/2018 CS61C Su18 - Lecture 14 46

20
miss

Starting with a cold cache:

1 000 M[0] M[1] M[2] M[3] M[4] M[5] M[6] M[7]
1 001 M[8] M[9] M[10] M[11] M[12] M[13] M[14] M[15]

1 010 M[16] M[17] M[18] M[19] M[20] M[21] M[22] M[23]
1 001 M[8] M[9] M[10] M[11] M[12] M[13] M[14] M[15]

1 010 M[16] M[17] M[18] M[19] M[20] M[21] M[22] M[23]
1 000 M[0] M[1] M[2] M[3] M[4] M[5] M[6] M[7]

16

0

hit

miss

1 010 M[16] M[17] M[18] M[19] M[20] M[21] M[22] M[23]
1 001 M[8] M[9] M[10] M[11] M[12] M[13] M[14] M[15]

2
hit

• 8 requests, 4 misses – cache parameters matter!

M H H M
010100

010000

000000

000010

47

Question:
Starting with the same cold cache as the first 3
examples, which of the sequences below will
result in the final state of the cache shown here:

0 2 12 4 16 8 0 6(A)

0 8 4 16 0 12 6 2(B)

6 12 4 8 2 16 0 0(C)

2 8 0 4 6 16 12 0(D)

1 0000 M[0] M[1] M[2] M[3]

1 0011 M[12] M[13] M[14] M[15]

1 0001 M[4] M[5] M[6] M[7]

1 0100 M[16] M[17] M[18] M[19]

LRU

XX

XX

11

XX

0

1

2

3

48

Question:
Starting with the same cold cache as the first 3
examples, which of the sequences below will
result in the final state of the cache shown here:

0 2 12 4 16 8 0 6(A)

0 8 4 16 0 12 6 2(B)

6 12 4 8 2 16 0 0(C)

2 8 0 4 6 16 12 0(D)

1 0000 M[0] M[1] M[2] M[3]

1 0011 M[12] M[13] M[14] M[15]

1 0001 M[4] M[5] M[6] M[7]

1 0100 M[16] M[17] M[18] M[19]

0

1

2

3

LRU

XX

XX

11

XX

49

Question:
Starting with the same cold cache as the first 3
examples, which of the sequences below will
result in the final state of the cache shown here:

0 2 12 4 16 8 0 6(A)

0 8 4 16 0 12 6 2(B)

6 12 4 8 2 16 0 0(C)

2 8 0 4 6 16 12 0(D)

1 0000 M[0] M[1] M[2] M[3]

1 0011 M[12] M[13] M[14] M[15]

1 0001 M[4] M[5] M[6] M[7]

1 0100 M[16] M[17] M[18] M[19]

0

1

2

3

LRU

XX

XX

11

XX

Break!

7/12/2018 CS61C Su18 - Lecture 14 50

Agenda

• Memory Hierarchy Overview

• Administrivia

• Fully Associative Caches

• Cache Reads and Writes

7/12/2018 CS61C Su18 - Lecture 14 51

Memory Accesses

• The picture so far:

• Cache is separate from memory
– Possible to hold different data?

7/12/2018 CS61C Su18 - Lecture 14 52

Cache
Addr

miss

hit

data

CPU

Main
Memory

Cache Reads and Writes

• Want to handle reads and writes quickly while
maintaining consistency between cache and
memory (i.e. both know about all updates)
– Policies for cache hits and misses are independent

• Here we assume the use of separate
instruction and data caches (I$ and D$)
– Read from both

– Write only to D$ (assume no self-modifying code)

7/12/2018 CS61C Su18 - Lecture 14 53

Handling Cache Hits

• Read hits (I$ and D$)
– Fastest possible scenario, so want more of these

• Write hits (D$)
1) Write-Through Policy: Always write data to

cache and to memory (through cache)
• Forces cache and memory to always be consistent

• Slow! (every memory access is long)

• Include a Write Buffer that updates memory in parallel
with processor

7/12/2018 CS61C Su18 - Lecture 14 54

Assume present in all schemes
when writing to memory

Handling Cache Hits

• Read hits (I$ and D$)
– Fastest possible scenario, so want more of these

• Write hits (D$)
2) Write-Back Policy: Write data only to cache,

then update memory when block is removed
• Allows cache and memory to be inconsistent

• Multiple writes collected in cache; single write to
memory per block

• Dirty bit: Extra bit per cache row that is set if block was
written to (is “dirty”) and needs to be written back

7/12/2018 CS61C Su18 - Lecture 14 55

• Miss penalty grows as block size does

• Read misses (I$ and D$)
– Stall execution, fetch block from memory, put in

cache, send requested data to processor, resume

• Write misses (D$)
– Always have to update block from memory

– We have to make a choice:

• Carry the updated block into cache or not?

Handling Cache Misses

7/12/2018 CS61C Su18 - Lecture 14 56

• Write Allocate policy: when we bring the block
into the cache after a write miss

• No Write Allocate policy: only change main
memory after a write miss
– Write allocate almost always paired with

write-back
• Eg: Accessing same address many times -> cache it

– No write allocate typically paired with
write-through
• Eg: Infrequent/random writes -> don’t bother caching it

Write Allocate

7/12/2018 CS61C Su18 - Lecture 14 57

Updated Cache Picture

• Fully associative, write through
– Same as previously shown

• Fully associative, write back

• Write miss procedure (write allocate or not)
only affects behavior, not design

7/12/2018 CS61C Su18 - Lecture 14 58

V D Tag 00 01 10 11

X X XXXX 0x?? 0x?? 0x?? 0x??

X X XXXX 0x?? 0x?? 0x?? 0x??

X X XXXX 0x?? 0x?? 0x?? 0x??

X X XXXX 0x?? 0x?? 0x?? 0x??

Slot

0

1

2

3

LRU

XX

XX

XX

XX

Summary

• Memory hierarchy exploits principle of locality to
deliver lots of memory at fast speeds

• Fully Associative Cache: Every block in memory
maps to any cache slot
– Offset to determine which byte within block
– Tag to identify if it’s the block you want

• Replacement policies: random and LRU
• Cache params: block size (K), cache size (C)
• Cache write policies:
– Write-back (need dirty bit) and write-through

7/12/2018 CS61C Su18 - Lecture 14 59

