
Memory Hierarchy, Fully Associative Caches

Instructor: Nick Riasanovsky



Review

• Hazards reduce effectiveness of pipelining
– Cause stalls/bubbles

• Structural Hazards
– Conflict in use of datapath component

• Data Hazards
– Need to wait for result of a previous instruction

• Control Hazards
– Address of next instruction uncertain/unknown

– Use branch prediction to avoid hazards
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Great Idea #3: Principle of Locality/
Memory Hierarchy
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Agenda

• Memory Hierarchy Overview

• Administrivia

• Fully Associative Caches

• Cache Reads and Writes
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Storage in a Computer

• Processor
– Holds data in register files (~ 100 B)

– Registers accessed on sub-nanosecond timescale

• Memory (“main memory”)
– More capacity than registers (~ GiB)

– Access time ~ 50-100 ns

• Hundreds of clock cycles per memory access?!
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Processor-Memory Gap
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“Moore’s Law”

Processor-Memory
Performance Gap
(grows 50%/year)

1989 first Intel CPU with cache on chip
1998 Pentium III has two cache levels on chip

µProc
55%/year
(2X/1.5yr)

DRAM
7%/year

(2X/10yrs)
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Library Analogy
• Writing a report on a specific topic
– e.g. history of the computer (your internet is out)

• While at library, take books from shelves and put 
them on shelf above your desk

• If need more, go get them and bring back to shelf
– Don’t return earlier books since might still need them
– Limited space on shelf; which books do we keep?

• You hope these ~10 books on shelf enough to write 
report
– Only 0.00001% of the books in UC Berkeley libraries!
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Principle of Locality (1/3)

• Principle of Locality: Programs access only a 
small portion of the full address space at any 
instant of time
– Recall:  Address space holds both code and data

– Loops and sequential instruction execution mean 
generally localized code access

– Stack and Heap try to keep your data together

– Arrays and structs naturally group data you would 
access together
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Principle of Locality (2/3)

• Temporal Locality (locality in time)
– Go back to the same book on desk multiple times

– If a memory location is referenced then it will 
tend to be referenced again soon

• Spatial Locality (locality in space)
– When go to shelves, grab many books on 

computers since related books are stored 
together

– If a memory location is referenced, the locations 
with nearby addresses will tend to be referenced 
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Principle of Locality (3/3)

• We exploit the principle of locality in 
hardware via a memory hierarchy where:
– Levels closer to processor are faster

(and more expensive per bit so smaller)

– Levels farther from processor are larger
(and less expensive per bit so slower)

• Goal:  Create the illusion of memory being 
almost as fast as fastest memory and almost 
as large as biggest memory of the hierarchy
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Memory Hierarchy Schematic
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Cache Concept

• Memory Cache—holds a copy of a subset of main 
memory
– We often use $ (“cash”) to abbreviate cache (e.g. D$ = 

Data Cache, L1$ = Level 1 Cache)

• Modern processors have separate caches for 
instructions and data, as well as several levels of 
caches implemented in different sizes

• Implemented with same IC processing technology 
as CPU and integrated on-chip – faster but more 
expensive than main memory
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Memory Transfer in the Hierarchy

Inclusive:  data in L1$ 
⊂ data in L2$ 
⊂ data in MM 
⊂ data in SM
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Processor

L1$

L2$

Secondary Memory

Main Memory

Block: Unit of 
transfer between 
memory and cache

4-8 bytes (word)

16-128 bytes (block)

4,096+ bytes (page)

8-32 bytes (block)



Managing the Hierarchy

• registers ↔ memory
– By compiler (or assembly level programmer)

• cache ↔ main memory
– By the cache controller hardware

• main memory ↔ disks (secondary storage)
– By the OS (virtual memory, which is a later topic)

– Virtual to physical address mapping assisted by 
the hardware (TLB)

– By the programmer (files)

7/12/2018 CS61C Su18 - Lecture 14 17

We are here



Typical Memory Hierarchy

7/12/2018 CS61C Su18 - Lecture 14 18

On-Chip Components

Second
Level
Cache

(SRAM)

Control

Datapath

Secondar
y

Memory
(Disk

or Flash)

R
egFile

Main 
Memory 
(DRAM)D

ata
C

ach
e

In
str

C
ach

e
Cost/bit:    highest      lowest

Speed: ½’s        1’s 10’s   100’s  1,000,000’s
(cycles)

Size:      100’s      10K’s  M’s      G’s   T’s
(bytes)



Memory Hierarchy Technologies

• Caches use static RAM (SRAM)
+ Fast (typical access times of 0.5 to 2.5 ns)

+ Higher power, expensive 
($2000 to $4000 per GB in 2011)

+ Static: content will last as long as power is on

• Main memory uses dynamic RAM (DRAM)
+ Lower power, cheaper 

($20 to $40 per GB in 2011)

+ Slower (typical access times of 50 to 70 ns) 

+ Dynamic: needs to be “refreshed” regularly (~ every 8 ms)

7/12/2018 CS61C Su18 - Lecture 14 19



Review So Far

• Goal:  present the programmer with ≈ as 
much memory as the largest memory at 
≈ the speed of the fastest memory

• Approach:  Memory Hierarchy
– Successively higher levels contain 

“most used” data from lower levels

– Exploits temporal and spatial locality

– We will start by studying caches
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Agenda

• Memory Hierarchy Overview

• Administrivia

• Fully Associative Caches

• Cache Reads and Writes
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Administrivia

• Sooo much new content, push through!
– Don’t fall behind now

• Proj2-2 due 7/13, HW3/4 due 7/16
– 2-2 autograder being run

• Project 3 released tonight after lab!
– Dependent on lab 6

• Supplementary review sessions starting
– First one this Sat. (7/14) 12-2p, Cory 540AB
– Check out Piazza for more info
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Agenda

• Memory Hierarchy Overview

• Administrivia

• Fully Associative Caches

• Cache Reads and Writes
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Cache Management

• What is the overall organization of blocks we 
impose on our cache?
– Where do we put a block of data from memory?

– How do we know if a block is already in cache?

– How do we quickly find a block when we need it?

– When do we replace something in the cache?
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General Notes on Caches (1/4)

• Recall:  Memory is byte-addressed

• We haven’t specified the size of our “blocks,” but 
will usually be multiple of word size (32-bits)
– How do we access individual words or bytes within a 

block?

• Cache is smaller than memory
– Can’t fit all blocks at once, so multiple blocks in 

memory must map to the same slot in cache

– Need some way of identifying which memory block is 
currently in each cache slot
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General Notes on Caches (2/4)

• Recall:  hold subset of memory in a place 
that’s faster to access
– Return data to you when you request it

– If cache doesn’t have it, then fetches it for you

• Cache must be able to check/identify its 
current contents

• What does cache initially hold?
– Garbage!  Cache considered “cold”

– Keep track with Valid bit
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General Notes on Caches (3/4)

• Effect of block size (K Bytes):
– Spatial locality dictates our blocks consist of 

adjacent bytes, which differ in address by 1

– Offset field:  Lowest bits of memory address can 
be used to index to specific bytes within a block
• Block size needs to be a power of two (in bytes)

• One way to compute the offset field is to mask out the 
Tag and Index bits
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General Notes on Caches (4/4)

• Effect of cache size (C Bytes):
– “Cache Size” refers to total stored data

– Determines number of blocks the cache can hold 
(C/K blocks)

– Tag field:  Leftover upper bits of memory address 
determine which portion of memory the block 
came from (identifier)
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Question:
You are given a 256 B cache that holds 8 data 
blocks. We are working on a 10-bit byte- 
addressed machine.
Which statement is false?

(A) Each data block holds 32 bytes of data 

(B) Our tag can be more than 5 bits 

(C) All of main memory could fit into four caches

(D) Only one valid copy of a block can be in the 
cache at any point in time



Fully Associative Caches

• Each memory block can map anywhere in the 
cache (fully associative)
– Most efficient use of space

– Least efficient to check

• To check a fully associative cache:
1) Look at ALL cache slots in parallel

2) If Valid bit is 0, then ignore

3) If Valid bit is 1 and Tag matches, then return that 
data
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Fully Associative Cache
Address Breakdown

• Memory address fields:

• Meaning of the field sizes:
– Offset bits  ↔  2Offset bytes per block 

= 2Offset-2 words per block

– Tag bits = A – Offset, where A = # of address bits 
(A = 32 here)
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Question:
You are given a 32 bit byte addressed machine.  
The offset field is 5 bits, but you decide to use 
only 26 bits to represent the tag. Which of the 
following statements is true?

(A) Each block can contain more data than if you 
used all 27 bits. 

(B) More bits will need to be stored by the cache 

(C) Fewer blocks can be stored in the cache than 
if you used all 27 bits.

(D) You cannot properly identify what is data 
block is in the cache.



Caching Terminology (1/2)

• When reading memory, 2 things can happen: 
– Cache hit: 

Cache holds a valid copy of the block, so return 
the desired data

– Cache miss: 
Cache does not have desired block, so fetch from 
memory and put in empty (invalid) slot

• If cache is full you must discard one valid block 
and replace it with desired data
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Block Replacement Policies

• Which block do you replace?
– Use a cache block replacement policy

– There are many (most are intuitively named), but 
we will just cover a few in this class

http://en.wikipedia.org/wiki/Cache_algorithms#Examples

• Of note:
– Random Replacement

– Least Recently Used (LRU): requires some 
“management bits”
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Understanding LRU

• The BEST replacement policy we could have is 
to replace data we will use farthest in the 
future
– Either never use again or use later than 

everything else

• Unfortunately this isn’t possible
• Instead we approximate using LRU
– Replace block we used least recently first in the 

hopes we will use it again later than all other 
blocks

36



Caching Terminology (2/2)

• How effective is your cache?
– Want to max cache hits and min cache misses
– Hit rate (HR):  Percentage of memory accesses in a 

program or set of instructions that result in a cache hit
– Miss rate (MR):  Like hit rate, but for cache misses

MR = 1 – HR

• How fast is your cache?
– Hit time (HT):  Time to access cache (including Tag 

comparison)
– Miss penalty (MP):  Time to replace a block in the 

cache from a lower level in the memory hierarchy 
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Fully Associative Cache 
Implementation

• What’s actually in the cache?
– Each cache slot contains the actual data block 

(8 × K = 8 × 2Offset bits)
– Tag field of address as identifier (Tag bits)
– Valid bit (1 bit): Whether cache slot was filled in
– Any necessary replacement management bits 

(“LRU bits” – variable # of bits stored in each row)

• Total bits in cache 
= # slots × (8×K + Tag + 1 + ?)
=  (C/K)  × (8×2Offset + Tag + 1 + ?) bits
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FA Cache Examples (1/4)

• Cache parameters:
– Fully associative, address space of 64B, block size 

of 1 word, cache size of 4 words, LRU (2 bits)

• Address Breakdown:
– 1 word = 4 bytes, so Offset = log

2
(4) = 2

– A = log
2
(64) = 6 bits, so Tag = 6 – 2 = 4

• Bits in cache 
= (4/1) × (8×22 + 4 + 1 + 2) = 156 bits
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FA Cache Examples (1/4)

• Cache parameters:
– Fully associative, address space of 64B, block size 

of 1 word, cache size of 4 words, LRU (2 bits)
– Offset – 2 bits, Tag – 4 bits

• 39 bits per slot, 156 bits to implement with LRU
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FA Cache Examples (2/4)
1) Consider the sequence of memory address accesses

                                       0     2     4     10     20    16     0     2
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0

4

miss

miss

Starting with a cold cache:

0 0000 0x?? 0x?? 0x?? 0x??
0 0000 0x?? 0x?? 0x?? 0x??
0 0000 0x?? 0x?? 0x?? 0x??
0 0000 0x?? 0x?? 0x?? 0x??

1 0000 M[0] M[1] M[2] M[3]
0 0000 0x?? 0x?? 0x?? 0x??
0 0000 0x?? 0x?? 0x?? 0x??
0 0000 0x?? 0x?? 0x?? 0x??

1 0000 M[0] M[1] M[2] M[3]
0 0000 0x?? 0x?? 0x?? 0x??
0 0000 0x?? 0x?? 0x?? 0x??
0 0000 0x?? 0x?? 0x?? 0x??

1 0000 M[0] M[1] M[2] M[3]
0 0000 0x?? 0x?? 0x?? 0x??
0 0000 0x?? 0x?? 0x?? 0x??
0 0000 0x?? 0x?? 0x?? 0x??

2 hit

1 0000 M[0] M[1] M[2] M[3]
1 0001 M[4] M[5] M[6] M[7]
0 0000 0x?? 0x?? 0x?? 0x??
0 0000 0x?? 0x?? 0x?? 0x??

1 0000 M[0] M[1] M[2] M[3]
1 0001 M[4] M[5] M[6] M[7]
0 0000 0x?? 0x?? 0x?? 0x??
0 0000 0x?? 0x?? 0x?? 0x??

10 miss
1 0000 M[0] M[1] M[2] M[3]
1 0001 M[4] M[5] M[6] M[7]
1 0010 M[8] M[9] M[10] M[11]
0 0000 0x?? 0x?? 0x?? 0x??

000000 000010

001010000100



FA Cache Examples (2/4)
1) Consider the sequence of memory address accesses

                                       0     2     4     10     20    16     0     2
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20

0

miss

miss

Starting with a cold cache:

• 8 requests, 6 misses – HR of 25%

1 0000 M[0] M[1] M[2] M[3]
1 0001 M[4] M[5] M[6] M[7]
1 0010 M[8] M[9] M[10] M[11]
0 0000 0x?? 0x?? 0x?? 0x??

1 0000 M[0] M[1] M[2] M[3]
1 0001 M[4] M[5] M[6] M[7]
1 0010 M[8] M[9] M[10] M[11]
1 0101 M[20] M[21] M[22] M[23]

1 0000 M[0] M[1] M[2] M[3]
1 0001 M[4] M[5] M[6] M[7]
1 0010 M[8] M[9] M[10] M[11]
1 0101 M[20] M[21] M[22] M[23]

1 0100 M[16] M[17] M[18] M[19]
1 0001 M[4] M[5] M[6] M[7]
1 0010 M[8] M[9] M[10] M[11]
1 0101 M[20] M[21] M[22] M[23]

16 miss

1 0100 M[16] M[17] M[18] M[19]
1 0000 M[0] M[1] M[2] M[3]
1 0010 M[8] M[9] M[10] M[11]
1 0101 M[20] M[21] M[22] M[23]

2 hit

M    H    M    M
010100 010000

000010000000

M M M H 



FA Cache Examples (3/4)
2) Same requests, but reordered

                                       0     2     2     0     16    20     10     4
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0

2

miss

hit

Starting with a cold cache:

1 0000 M[0] M[1] M[2] M[3]
0 0000 0x?? 0x?? 0x?? 0x??
0 0000 0x?? 0x?? 0x?? 0x??
0 0000 0x?? 0x?? 0x?? 0x??

1 0000 M[0] M[1] M[2] M[3]
0 0000 0x?? 0x?? 0x?? 0x??
0 0000 0x?? 0x?? 0x?? 0x??
0 0000 0x?? 0x?? 0x?? 0x??

1 0000 M[0] M[1] M[2] M[3]
0 0000 0x?? 0x?? 0x?? 0x??
0 0000 0x?? 0x?? 0x?? 0x??
0 0000 0x?? 0x?? 0x?? 0x??

2 hit

1 0000 M[0] M[1] M[2] M[3]
0 0000 0x?? 0x?? 0x?? 0x??
0 0000 0x?? 0x?? 0x?? 0x??
0 0000 0x?? 0x?? 0x?? 0x??

0 hit

000000 000010

000000000010



1 0000 M[0] M[1] M[2] M[3]
1 0100 M[16] M[17] M[18] M[19]
1 0101 M[20] M[21] M[22] M[23]
1 0010 M[8] M[9] M[10] M[11]

1 0000 M[0] M[1] M[2] M[3]
1 0100 M[16] M[17] M[18] M[19]
1 0101 M[20] M[21] M[22] M[23]
0 0000 0x?? 0x?? 0x?? 0x??

1 0000 M[0] M[1] M[2] M[3]
1 0100 M[16] M[17] M[18] M[19]
0 0000 0x?? 0x?? 0x?? 0x??
0 0000 0x?? 0x?? 0x?? 0x??

FA Cache Examples (3/4)
2) Same requests, but reordered

                                       0     2     2     0     16    20     10     4
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16

10

miss

miss

Starting with a cold cache:

• 8 requests, 5 misses – ordering matters!

1 0000 M[0] M[1] M[2] M[3]
0 0000 0x?? 0x?? 0x?? 0x??
0 0000 0x?? 0x?? 0x?? 0x??
0 0000 0x?? 0x?? 0x?? 0x??

1 0000 M[0] M[1] M[2] M[3]
1 0100 M[16] M[17] M[18] M[19]
0 0000 0x?? 0x?? 0x?? 0x??
0 0000 0x?? 0x?? 0x?? 0x??

1 0000 M[0] M[1] M[2] M[3]
1 0100 M[16] M[17] M[18] M[19]
1 0101 M[20] M[21] M[22] M[23]
0 0000 0x?? 0x?? 0x?? 0x??

1 0000 M[0] M[1] M[2] M[3]
1 0100 M[16] M[17] M[18] M[19]
1 0101 M[20] M[21] M[22] M[23]
1 0010 M[8] M[9] M[10] M[11]

20 miss

1 0000 M[0] M[1] M[2] M[3]
1 0100 M[16] M[17] M[18] M[19]
1 0101 M[20] M[21] M[22] M[23]
1 0010 M[8] M[9] M[10] M[11]

4 miss

M    H    H     H
010000 010100

000100001010



FA Cache Examples (4/4)
3) Original sequence, but double block size

                                       0     2     4     10     20    16     0     2
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0
miss

Starting with a cold cache:

0 000 0x?? 0x?? 0x?? 0x?? 0x?? 0x?? 0x?? 0x??
0 000 0x?? 0x?? 0x?? 0x?? 0x?? 0x?? 0x?? 0x??

1 000 M[0] M[1] M[2] M[3] M[4] M[5] M[6] M[7]
0 000 0x?? 0x?? 0x?? 0x?? 0x?? 0x?? 0x?? 0x??

1 000 M[0] M[1] M[2] M[3] M[4] M[5] M[6] M[7]
0 000 0x?? 0x?? 0x?? 0x?? 0x?? 0x?? 0x?? 0x??

1 000 M[0] M[1] M[2] M[3] M[4] M[5] M[6] M[7]
0 000 0x?? 0x?? 0x?? 0x?? 0x?? 0x?? 0x?? 0x??

2

4

hit

hit

10
miss

1 000 M[0] M[1] M[2] M[3] M[4] M[5] M[6] M[7]
0 000 0x?? 0x?? 0x?? 0x?? 0x?? 0x?? 0x?? 0x??

1 000 M[0] M[1] M[2] M[3] M[4] M[5] M[6] M[7]
1 001 M[8] M[9] M[10] M[11] M[12] M[13] M[14] M[15]

000000

000010

000100

001010



FA Cache Examples (4/4)
3) Original sequence, but double block size

                                       0     2     4     8     20    16     0     2
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20
miss

Starting with a cold cache:

1 000 M[0] M[1] M[2] M[3] M[4] M[5] M[6] M[7]
1 001 M[8] M[9] M[10] M[11] M[12] M[13] M[14] M[15]

1 010 M[16] M[17] M[18] M[19] M[20] M[21] M[22] M[23]
1 001 M[8] M[9] M[10] M[11] M[12] M[13] M[14] M[15]

1 010 M[16] M[17] M[18] M[19] M[20] M[21] M[22] M[23]
1 000 M[0] M[1] M[2] M[3] M[4] M[5] M[6] M[7]

16

0

hit

miss

1 010 M[16] M[17] M[18] M[19] M[20] M[21] M[22] M[23]
1 001 M[8] M[9] M[10] M[11] M[12] M[13] M[14] M[15]

2
hit

• 8 requests, 4 misses – cache parameters matter!

M    H    H     M
010100

010000

000000

000010
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Question:
Starting with the same cold cache as the first 3 
examples, which of the sequences below will 
result in the final state of the cache shown here:

0       2     12       4     16      8       0       6(A)

0       8       4     16       0    12       6       2(B)

6     12       4       8       2    16       0       0(C)

2       8       0       4       6    16     12       0(D)

1 0000 M[0] M[1] M[2] M[3]

1 0011 M[12] M[13] M[14] M[15]

1 0001 M[4] M[5] M[6] M[7]

1 0100 M[16] M[17] M[18] M[19]

LRU

XX

XX

11

XX

0

1

2

3
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Question:
Starting with the same cold cache as the first 3 
examples, which of the sequences below will 
result in the final state of the cache shown here:

0       2     12       4     16      8       0       6(A)

0       8       4     16       0    12       6       2(B)

6     12       4       8       2    16       0       0(C)

2       8       0       4       6    16     12       0(D)

1 0000 M[0] M[1] M[2] M[3]

1 0011 M[12] M[13] M[14] M[15]

1 0001 M[4] M[5] M[6] M[7]

1 0100 M[16] M[17] M[18] M[19]

0

1

2

3

LRU

XX

XX

11

XX
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Question:
Starting with the same cold cache as the first 3 
examples, which of the sequences below will 
result in the final state of the cache shown here:

0       2     12       4     16      8       0       6(A)

0       8       4     16       0    12       6       2(B)

6     12       4       8       2    16       0       0(C)

2       8       0       4       6    16     12       0(D)

1 0000 M[0] M[1] M[2] M[3]

1 0011 M[12] M[13] M[14] M[15]

1 0001 M[4] M[5] M[6] M[7]

1 0100 M[16] M[17] M[18] M[19]

0

1

2

3

LRU

XX

XX

11

XX



Break!
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Agenda

• Memory Hierarchy Overview

• Administrivia

• Fully Associative Caches

• Cache Reads and Writes
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Memory Accesses 

• The picture so far:

• Cache is separate from memory
– Possible to hold different data?
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Cache Reads and Writes

• Want to handle reads and writes quickly while 
maintaining consistency between cache and 
memory (i.e. both know about all updates)
– Policies for cache hits and misses are independent

• Here we assume the use of separate 
instruction and data caches (I$ and D$)
– Read from both

– Write only to D$ (assume no self-modifying code)
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Handling Cache Hits

• Read hits (I$ and D$)
– Fastest possible scenario, so want more of these

• Write hits (D$)
1) Write-Through Policy:  Always write data to 

cache and to memory (through cache)
• Forces cache and memory to always be consistent

• Slow!  (every memory access is long) 

• Include a Write Buffer that updates memory in parallel 
with processor
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Assume present in all schemes 
when writing to memory



Handling Cache Hits

• Read hits (I$ and D$)
– Fastest possible scenario, so want more of these

• Write hits (D$)
2) Write-Back Policy:  Write data only to cache, 

then update memory when block is removed
• Allows cache and memory to be inconsistent

• Multiple writes collected in cache; single write to 
memory per block

• Dirty bit:  Extra bit per cache row that is set if block was 
written to (is “dirty”) and needs to be written back
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• Miss penalty grows as block size does

• Read misses (I$ and D$)
– Stall execution, fetch block from memory, put in 

cache, send requested data to processor, resume

• Write misses (D$)
– Always have to update block from memory

– We have to make a choice:

• Carry the updated block into cache or not?

Handling Cache Misses

7/12/2018 CS61C Su18 - Lecture 14 56



• Write Allocate policy: when we bring the block 
into the cache after a write miss

• No Write Allocate policy: only change main 
memory after a write miss
– Write allocate almost always paired with 

write-back
• Eg: Accessing same address many times -> cache it

– No write allocate typically paired with 
write-through
• Eg: Infrequent/random writes -> don’t bother caching it

Write Allocate
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Updated Cache Picture

• Fully associative, write through
– Same as previously shown

• Fully associative, write back

• Write miss procedure (write allocate or not) 
only affects behavior, not design

7/12/2018 CS61C Su18 - Lecture 14 58

V D Tag 00 01 10 11

X X XXXX 0x?? 0x?? 0x?? 0x??

X X XXXX 0x?? 0x?? 0x?? 0x??

X X XXXX 0x?? 0x?? 0x?? 0x??

X X XXXX 0x?? 0x?? 0x?? 0x??

Slot

0

1

2

3

LRU

XX

XX

XX

XX



Summary

• Memory hierarchy exploits principle of locality to 
deliver lots of memory at fast speeds

• Fully Associative Cache:  Every block in memory 
maps to any cache slot
– Offset to determine which byte within block
– Tag to identify if it’s the block you want

• Replacement policies:  random and LRU
• Cache params:  block size (K), cache size (C)
• Cache write policies:
– Write-back (need dirty bit) and write-through
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