

CS 61C (Clancy) Lab assignment for week 12
Spring 2003

1

Goals

In this lab exercise you will gain experience designing and simulating a simple
sequential logic circuit. It will give you practice using Verilog for logic simulation and
(we hope) an appreciation for the issues involved in designing, testing, and debug-
ging sequential logic circuits.

Reading

Sections 6–9 of “CS 61C Verilog Tutorial”; P&H section B.6.

Working with partners

If you work with a partner on these exercises, make sure that you both understand
all aspects of your solutions. Where you split work among partnership members,
expect your lab t.a. or lab assistant to ask you to explain the work of your partner.

Background

Appendix B in P&H present a description of a circuit used to control a traffic light.
Your job in this lab is to implement and test the traffic light controller in Verilog.

The details of the traffic light controller finite state machine are explained in P&H.
You should follow that specification with one modification. Add an input signal
called

RST

. Asserting this signal should "reset" the controller to the NSgreen state
(on the next positive clock edge) regardless of its current state and the value of the
other inputs. The easiest way to achieve this behavior is to wire the

RST

 signal to the

RST

 input on the flip-flop used to store the current state. Otherwise your circuit
should be identical to the one described in the book.

Your circuit will need to include a flip-flop to hold the current state. Below is the Ver-
ilog source, provided in the file

~cs61c/labs/lab12/light.v

, for the flip-flop module to
use in your design.

//Behavioral model of D-type Flip-flop:
// positive edge-triggered,
// synchrounous active-high reset.

module DFF (CLK,Q,D,RST);
 input D;
 input CLK, RST;
 output Q;
 reg Q;
 always @ (posedge CLK)
 if (RST) Q = 0; else Q = D;
endmodule // DFF

CS 61C (Clancy) Lab assignment for week 12
Spring 2003

2

Exercise 1 (1 checkoff point)

Copy

~cs61c/labs/lab12/light.v

 to your directory. Then add a new module to

light.v

that implements the next-state combinational logic for the traffic light controller.
Run it through the Verilog compiler. Test it with one or two input cases and show the
result to your t.a. for checkoff.

Exercise 2 (2 checkoff points)

Add a new module that implements the traffic light controller. This module must
include instances of your next-state combinational logic and a flip-flop to hold the
current state. Test it with one or two input cases and show the result to your t.a. for
checkoff.

Use the following module and port names:

module light (NSlite, EWlite, NScar, EWcar, CLK, RST);
 output NSlite, EWlite;
 input NScar, EWcar;
 input CLK, RST;

Exercise 3 (1 checkoff point)

Now write a test bench and use it to test and debug your controller. Follow the proce-
dures for testing finite state machines, presented in the CS61C Verilog Tutorial; in
particular, make sure you test every possible transition from every state. Display
your output to your t.a. for checkoff.

Having done this lab …

We expect that, having done this lab assignment, you will understand the use of a
flip-flop to store state and will be familiar with the pattern of splitting a finite state
machine into the controller, which maintains the current state, and the next-state
and output combinational functions.

