CS61C — Machine Structures

Lecture 2 — Number Representation

1/20/2006
John Wawrzynek

(www.cs.berkeley.edu/~johnw)

www-inst.eecs.berkeley.edu/~cs61c/

CS 61C L02 Number Rep! ion (1) Wawrzynek Spring 2006 © UCB

From Lecture 1

°Read class info document.

°Get class account form and login by
5pm today.

°Look at class website often!

°Posted / handouts:
* Reading for this week: P&H Ch1 & 3.1-2
* Reading for Monday K&R Ch1-4
- Reading for W, F: K&R Ch5&6
* HW1 due Wednesday

CS 61C L02 Number Rep! ion (2) Wawrzynek Spring 2006 © UCB

Decimal Numbers: Base 10

Digits: 0, 1,2, 3, 4, 5,6,7, 8,9

Example:
3271 =
(3x103) + (2x102) + (7x107) + (1x10°)

CS 61C L02 Number Representation (3) Wawrzynek Spring 2006 © UCB

Numbers: positional notation

°Number Base B = B symbols per digit:
- Base 10 (Decimal): 0,1,2,3,4,5,6,7,8,9
Base 2 (Binary): 0,1

°Number representation:
* d;,d; ... dyd d, is a 32 digit number
*value=d;;x B3 +d;; x B3 +...+d, x B2+ d, x B! +
d, x B®
°Binary: 0,1 (In binary digits called “bits”)

1011010 = 1x26 + Ox25 + 1x24 + 1x23 + 0x22 + 1x2 +
0x1=64+16+8+2=90

* Notice that 7 digit binary number turns into a 2
digit decimal number

* A base that converts to binary easily?

CS 61C L02 Number Representation (4) Wawrzynek Spring 2006 © UCB

Hexadecimal Numbers: Base 16

°Hexadecimal:
0,1,2,3,4,5,6,7,8,9, A,B,C,D,E, F

* Normal digits + 6 more from the alphabet
°Conversion: Binary<Hex
1 hex digit represents 16 decimal values

* 4 binary digits represent 16 decimal values
=> 1 hex digit replaces 4 binary digits

°Example:
-1010 1100 0101 (binary) = ? (hex)

CS 61C L02 Number Representation (5) Wawrzynek Spring 2006 © UCB

Decimal vs. Hexadecimal vs. Binary

Examples: 82 g 888(1)
1010 1100 0101 (binary) 02 2 0010
= AC5 (nex) 013 8
10111 (binar 05 5 o010l
100010113 Yl)ulnary) 088 ol
e R
1001

3F9(hex)] 10 A 1010
=11 1111 1001 (binary) 11 B 1011
12 ¢ 1100

13 D 1101

14 E 1110

15 F 1111

CS 61C L02 Number Representation (6) Wawrzynek Spring 2006 © UCB

What to do with representations of numbers?

° Just what we do with numbers!

« Add them

* Subtract them 1 0 1 0
* Multiply them + 0 1 1 1
* Divide them

- Compare them
° Example: 10+ 7 =17

- so simple to add in binary that we can
build circuits to do it

- subtraction also just as you would in
decimal

CS 61C L02 Number Representation (7)

Wawrzynek Spring 2006 © UCB

Comparison

How doyoutellif X>Y ?

CS 61C L02 Number Representation (8)

Wawrzynek Spring 2006 © UCB

Which base do we use?

° Decimal: %reat_for humans, especially when
doing arithmetic

° Hex: if human looking at long strings of
binary numbers, its much easier to convert
to hex and look 4 bits/symbol

+ Terrible for arithmetic on paper
° Binary: what computers use;
you will learn how computers do +,-,*,/
* To a computer, numbers always binary
* Regardless of how number is written:
32,, == 0x20 == 100000,

+ Use subscripts “ten”, “hex”, “two” in book,
slides when might be confusing

CS 61C L02 Number Representation (9) Wawrzynek Spring 2006 © UCB

Limits of Computer Numbers

° Characters?
« 26 letters = 5 bits (2° = 32)

* upper/lower case + punctuation
= 7 bits (in 8) (“ASCII”)

- standard code to cover all the world’s
languages = 16 bits (“unicode”)

°Logical values?
*0 = False, 1 = True

°colors ? Ex: [edi00)] |EHESH0H S

°locations / addresses? commands?

CS 61C L02 Number Representation (10) Wawrzynek Spring 2006 © UCB

How to Represent Negative Numbers?

°So far, unsigned numbers
° Obvious solution: define leftmost bit to be sign!

‘0=+1=-

* Rest of bits can be numerical value of number

° Representation called sign and magnitude

° MIPS uses 32-bit integers. +1,,,, would be:
000 0000 0000 0000 0000 0000 0000 0001

°And - 1., in sign and magnitude would be:
000 0000 0000 0000 0000 0000 0000 0001

CS 61C L02 Number Representation (11) Wawrzynek Spring 2006 © UCB

Shortcomings of sign and magnitude?

° Arithmetic circuit complicated

- Special steps depending whether signs are
the same or not

°Also, Two zeros
- 0x00000000 = +0,.,,
-+ 0x80000000 = -0,
* What would 2 0s mean for programming?

°Therefore sign and magnitude abandoned

CS 61C L02 Number Representation (12) Wawrzynek Spring 2006 © UCB

Another try: complement the bits

°Example: 7,,=00111, -7,,=11000,
°Called One’s Complement

°Note: positive numbers have leading 0s,
negative numbers have leadings 1s.

OO(I)OO 00001 ... 01111

< >

]
10000 ...1111011111

°What is -00000 ? Answer: 11111
°How many positive numbers in N bits?

°How many negative ones?

CS 61C L02 Number Representation (13) Wawrzynek Spring 2006 © UCB

Shortcomings of One’s complement?

° Arithmetic still a somewhat complicated.

°Still two zeros
+ 0x00000000 = +0,,,,
* OXFFFFFFFF = -0,
° Although used for awhile on some
computer products, one’s complement was

eventually abandoned because another
solution was better.

CS 61C L02 Number Representation (14) Wawrzynek Spring 2006 © UCB

Standard Negative Number Representation

°What is result for unsigned numbers if tried
to subtract large number from a small one?

* Would try to borrow from string of leading 0s,
so result would have a string of leading 1s

- 3-4=00...0011 - 00...0100 =11...1111

+ With no obvious better alternative, pick
representation that made the hardware simple

- As with sign and magnitude,]
leading 0s = positive, leading 1s = negative

- 000000...xxx is>=0, 111111...xxxis<0
- except1...1111is -1, not -0 (as in sign & mag.)

°This representation is Two’s Complement

CS 61C L02 Number Representation (15) Wawrzynek Spring 2006 © UCB

2’s Complement Number “line”: N=5

11111 99090 o901 °2 N1 non-
11110 00010 negatives
11101 °2 N-1 negatives
11100
°one zero
how man
positives*

10001 10000 01111

CS 61C L02 Number Representation (16) Wawrzynek Spring 2006 © UCB

Two’s Complement for N=32

0‘=ﬂ=

: Tion
0000 ... 0000 0000 0000 0010

two ten
0111...1111 1111 1111 1101 2,147,483,645

IYY7-9

two ten

0111 1111 1111 1111 111040= 2'147/483,646,
0111 1111 1111 1111 1111, = X
.. 0000 0000 0000 0000. = —
1o = —W 47.483.647
000 ... 0000 0000 0000 0010,.. = =2,147,483,646,..
1111 ... 1111 1111 1111 1101, = -3
1111 ... 1111 1111 1111 111040 = 2
1111 o 1111 1111 1111 1111 = 1en
°One zero; 1st bit called sign bit

°1 “extra” negative:no positive 2,147,483,648

ten

CS 61C L02 Number Rep! ion (17)

Wawrzynek Spring 2006 © UCB

Two’s Complement Formula

°Can represent positive and negative numbers
in terms of the bit value times a power of 2:

ds, X +dy;px 230+ .. +d,x22+d,x21 +dyx 20

°Example: 1111 1100,,,,
= +1x26 +1x25+ 1x24+ 1x23+ 1x22+0x21+0x20
=-2"4+254+ 254+ 244+23+22+0+0
+64+32+16+8 +4
+124

CS 61C L02 Number Rep! ion (18)

Wawrzynek Spring 2006 © UCB

Two’s Complement shortcut: Negation

°Change every 0 to 1 and 1 to O (invert or
complement), then add 1 to the result

°Proof: Sum of number and its (one’s)
complement must be 111...111
However, 111...111,,,,= -1;en
Let X’ = one’s complement representation of x
Thenx+ X =-1=x+X+1=0=x"+1=-X

two

°Example: -4 to +4 to -4

X : 11111111 1111 1111 1111 1111 1111 1100,,,,
X": 0000 0000 0000 0000 0000 0000 0000 0011,
7 : 0000 0000 0000 0000 0000 0000 0000 0100,,,.
- 1111 1111 1111 1111 1111 1111 1111 1011,

CS 61C L02 Number Representation (19) Wawrzynek Spring 2006 © UCB

Two’s comp. shortcut: Sign extension

° Convert 2’s complement number rep. using
n bits to more than n bits

° Si_mplg_replicate the most significant bit
(sign bit) of smaller to fill new bits
+2’s comp. positive number has infinite 0s
+2’s comp. negative number has infinite 1s

‘Binary representation hides leading bits;
sign extension restores some of them

-16-bit -4, to 32-bit:
1111 1111 1111 1100
1111 1111 1111 1111 1111 1111 1111 1100,

CS 61C L02 Number Representation (20) Wawrzynek Spring 2006 © UCB

two

Signed vs. Unsigned Variables

°Java just declares integers int
- Uses two’s complement

°C has declaration int also
- Declares variable as a signed integer
- Uses two’s complement

°Also, C declaration unsigned int
- Declares a unsigned integer

* Treats 32-bit number as unsigned
integer, so most significant bit is part of
the number, not a sign bit

CS 61C L02 Number Representation (21) Wawrzynek Spring 2006 © UCB

Numbers represented in memory

00000 °Memory is a place to
store bits

°A word is a fixed
101101100110 01110 number of bits (eg, 32)
at an address

°Addresses are
naturally represented
gsgnmgned numbers
in

11111 =2k -1

CS 61C L02 Number Representation (22) Wawrzynek Spring 2006 © UCB

Signed v. Unsigned Comparisons

cX=1111 1111 1111 1111 1111 1111 1111 1100
°Y=00111011 1001 1010 1000 1010 0000 0000

two

two

°lIs X>Y?

unsigned: YES
signed: NO

CS 61C L02 Number Representation (23) Wawrzynek Spring 2006 © UCB

What if too big?

° Binary bit patterns above are simply _
representatives of numbers. Strictly speaking
they are called “numerals”.

° Numbers really have an infinite number of
digits
+ with almost all being same (00...0 or 11...1) except
for a few of the rightmost digits

+ Just don’t normally show leading digits
° If result of add (or -,*,/) cannot be represented

*
by these rightmost H bits, overflow is said to
have occurred.

00000 00001 00010 11110 11111
- - ——t

'unsigned

CS 61C L02 Number Representation (24) Wawrzynek Spring 2006 © UCB

And in Conclusion...

°We represent “things” in computers as
particular bit patterns: N bits = 2N

- numbers, characters, ...

°Decimal for human calculations, binary
to understand computers, hexadecimal
to understand binary

°2’s complement universal in
computing: cannot avoid, so learn

°Overflow: numbers infinite but
computers finite, so errors occur

CS 61C L02 Number Representation (25) Wawrzynek Spring 2006 © UCB

