CS61C - Machine Structures

Lecture 2 – Number Representation

1/20/2006 John Wawrzynek

(Warznek)

(www.cs.berkeley.edu/~johnw)

www-inst.eecs.berkeley.edu/~cs61c/

CS 61C L02 Number Representation (1)

Wawrzynek Spring 2006 © UCB

From Lecture 1

- °Read class info document.
- Get class account form and login by 5pm today.
- °Look at class website often!
- ° Posted / handouts:
 - Reading for this week: P&H Ch1 & 3.1-2
 - Reading for Monday K&R Ch1-4
 - Reading for W, F: K&R Ch5&6
 - HW1 due Wednesday

CS 61C L02 Number Representation (2)

Decimal Numbers: Base 10

Digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

Example:

$$3271 =$$

$$(3x10^3) + (2x10^2) + (7x10^1) + (1x10^0)$$

CS 61C L02 Number Representation (3)

Wawrzynek Spring 2006 © UCB

Numbers: positional notation

- ° Number Base B ⇒ B symbols per digit:
 - Base 10 (Decimal): 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 Base 2 (Binary): 0, 1
- ° Number representation:
 - $\ \, \boldsymbol{\cdot} \, \, \boldsymbol{d_{31}} \boldsymbol{d_{30}} \, \dots \, \boldsymbol{d_{2}} \boldsymbol{d_{1}} \boldsymbol{d_{0}} \, \text{is a 32 digit number} \,$
 - value = $d_{31}x B^{31} + d_{30} x B^{30} + ... + d_2 x B^2 + d_1 x B^1 + d_0 x B^0$
- ° Binary: 0,1 (In binary digits called "bits")
 - \cdot 1011010 = 1x2⁶ + 0x2⁵ + 1x2⁴ + 1x2³ + 0x2² + 1x2 + 0x1 = 64 + 16 + 8 + 2 = 90
 - Notice that 7 digit binary number turns into a 2 digit decimal number
 - A base that converts to binary easily?

CS 61C L02 Number Representation (4)

Hexadecimal Numbers: Base 16

- °Hexadecimal: 0,1,2,3,4,5,6,7,8,9, A, B, C, D, E, F
 - Normal digits + 6 more from the alphabet
- °Conversion: Binary⇔Hex
 - •1 hex digit represents 16 decimal values
 - · 4 binary digits represent 16 decimal values
 - ⇒ 1 hex digit replaces 4 binary digits
- °Example:
 - ·1010 1100 0101 (binary) = ? (hex)

CS 61C L02 Number Representation (5)

Wawrzynek Spring 2006 © UCB

Decimal vs. Hexadecimal vs. Binary

Examples:	00 0 01 1	0000 0001
1010 1100 0101 (binary)	02 2	0010
= AC5 (hex)	03 3	0011
- AGS (HEX)	04 4	0100
10111 (hinary)	05 5	0101
10111 (binary) = 0001 0111 (binary)	06 6	0110
= 0001 0111 (billary)	07 7	0111
= 17 (hex)	08 8	1000
0F0/ls ass)	09 9	1001
3F9(hex)	10 A	1010
= 11 1111 1001 (binary)	11 B	1011
	12 C	1100
	13 D	1101
	14 E	1110
How do we convert between hex and Decimal?	15 F	1111

CS 61C L02 Number Representation (6)

What to do with representations of numbers?

- ° Just what we do with numbers!
 - Add them
 - Subtract them
 - Multiply them
 - Divide them
 - Compare them
- ° Example: 10 + 7 = 17

- 1 1
- 1 0 1 0
- + 0 1 1 1
- 1 0 0 0 1
- so simple to add in binary that we can build circuits to do it
- subtraction also just as you would in decimal

CS 61C L02 Number Representation (7)

Wawrzynek Spring 2006 © UCB

Comparison

How do you tell if X > Y?

CS 61C L02 Number Representation (8)

Which base do we use?

- Decimal: great for humans, especially when doing arithmetic
- Hex: if human looking at long strings of binary numbers, its much easier to convert to hex and look 4 bits/symbol
 - Terrible for arithmetic on paper
- Binary: what computers use; you will learn how computers do +,-,*,/
 - To a computer, numbers always binary
 - Regardless of how number is written:

$$32_{10} == 0x20 == 100000_2$$

 Use subscripts "ten", "hex", "two" in book, slides when might be confusing

CS 61C L02 Number Representation (9)

Wawrzynek Spring 2006 © UCB

Limits of Computer Numbers

- ° Bits can represent anything!
- ° Characters?
 - 26 letters \Rightarrow 5 bits (2⁵ = 32)
 - upper/lower case + punctuation
 ⇒ 7 bits (in 8) ("ASCII")
 - standard code to cover all the world's languages ⇒ 16 bits ("unicode")
- ° Logical values?
 - \cdot 0 ⇒ False, 1 ⇒ True
- ° colors ? Ex: Red (00) Green (01) Blue (11)
- ° locations / addresses? commands?
- ° but N bits ⇒ only 2^N things

CS 61C L02 Number Representation (10)

How to Represent Negative Numbers?

- ° So far, unsigned numbers
- Obvious solution: define leftmost bit to be sign!
 - $\cdot 0 \Rightarrow +, 1 \Rightarrow -$
 - · Rest of bits can be numerical value of number
- ° Representation called sign and magnitude
- ° MIPS uses 32-bit integers. +1_{ten} would be:
- ° And 1_{ten} in sign and magnitude would be:
- 1000 0000 0000 0000 0000 0000 0000 0001

CS 61C L02 Number Representation (11)

Wawrzynek Spring 2006 © UCB

Shortcomings of sign and magnitude?

- Arithmetic circuit complicated
 - Special steps depending whether signs are the same or not
- °Also, Two zeros
 - $0x00000000 = +0_{ten}$
 - $0x80000000 = -0_{ten}$
 - · What would 2 0s mean for programming?
- °Therefore sign and magnitude abandoned

CS 61C L02 Number Representation (12)

Another try: complement the bits

- °Example: $7_{10} = 00111_2 7_{10} = 11000_2$
- °Called One's Complement
- °Note: positive numbers have leading 0s, negative numbers have leadings 1s.

- °What is -00000 ? Answer: 11111
- °How many positive numbers in N bits?
- °How many negative ones?

CS 61C L02 Number Representation (13)

Wawrzynek Spring 2006 © UCB

Shortcomings of One's complement?

- ° Arithmetic still a somewhat complicated.
- °Still two zeros
 - $0 \times 000000000 = +0_{ten}$
 - $0xFFFFFFFFFFFFF = -0_{ten}$
- Oalthough used for awhile on some computer products, one's complement was eventually abandoned because another solution was better.

CS 61C L02 Number Representation (14)

Standard Negative Number Representation

- °What is result for unsigned numbers if tried to subtract large number from a small one?
 - Would try to borrow from string of leading 0s, so result would have a string of leading 1s
 - $-3-4 \Rightarrow 00...0011-00...0100 = 11...1111$
 - With no obvious better alternative, pick representation that made the hardware simple
 - As with sign and magnitude, leading 0s ⇒ positive, leading 1s ⇒ negative
 - 000000...xxx is >=0, 111111...xxx is < 0
 - except 1...1111 is -1, not -0 (as in sign & mag.)
- °This representation is Two's Complement

CS 61C L02 Number Representation (15)

Wawrzynek Spring 2006 © UCB

2's Complement Number "line": N = 5

- °2 N-1 nonnegatives
- °2 N-1 negatives
- °one zero
- °how many positives?

CS 61C L02 Number Representation (16)

Two's Complement for N=32

0000 0000 0000 0000 0000 =	0,
0000 0000 0000 0000 0001 _{two} =	1,,,
0000 0000 0000 0000 0010 two =	2 _{ten}
0111 1111 1111 1111 1101 _{two} = 0111 1111 1111 1111 1110 _{two} =	2,147,483,645 _{ten} 2,147,483,646.
0111 1111 1111 1111 1110 _{two} =	2,147,483,646 _{ten}
0111 1111 1111 1111 1111 _{twe} =	2.147.483.647.en
1000 0000 0000 0000 0000 =	-2.147.483.648
1000 0000 0000 0000 0001 ===========	$-2,147,483,647_{ten}$
1000 0000 0000 0000 0010 two =	-2,147,483,646 _{ten}
1111 1111 1111 1111 1101 _{two} = 1111 1111 1111 1110 _{two} =	−3 _{ten}
1111 1111 1111 1111 1110 _{two} =	
1111 1111 1111 1111 1111 _{two} =	-1 _{ten}

- ° One zero; 1st bit called sign bit
- $^{\circ}$ 1 "extra" negative:no positive 2,147,483,648 $_{\mathrm{ten}}$

CS 61C L02 Number Representation (17)

Wawrzynek Spring 2006 © UCB

Two's Complement Formula

°Can represent positive and negative numbers in terms of the bit value times a power of 2:

$$d_{31} x(-2^{31}) + d_{30} x 2^{30} + ... + d_2 x 2^2 + d_1 x 2^1 + d_0 x 2^0$$

°Example: 1111 1100_{two}

$$= 1x-2^{7}+1x2^{6}+1x2^{5}+1x2^{4}+1x2^{3}+1x2^{2}+0x2^{1}+0x2^{0}$$

$$= -2^7 + 2^6 + 2^5 + 2^4 + 2^3 + 2^2 + 0 + 0$$

$$= -128 + 64 + 32 + 16 + 8 + 4$$

$$= -128 + 124$$

CS 61C L02 Number Representation (18)

Two's Complement shortcut: Negation

- °Change every 0 to 1 and 1 to 0 (invert or complement), then add 1 to the result
- °Proof: Sum of number and its (one's) complement must be 111...111_{two}

```
However, 111...111_{two} = -1_{ten}
Let x' \Rightarrow one's complement representation of x
Then x + x' = -1 \Rightarrow x + x' + 1 = 0 \Rightarrow x' + 1 = -x
```

CS 61C L02 Number Representation (19)

Wawrzynek Spring 2006 © UCB

Two's comp. shortcut: Sign extension

- Convert 2's complement number rep. using n bits to more than n bits
- Simply replicate the most significant bit (sign bit) of smaller to fill new bits
 - •2's comp. positive number has infinite 0s
 - 2's comp. negative number has infinite 1s
 - Binary representation hides leading bits;
 sign extension restores some of them
 - •16-bit -4_{ten} to 32-bit:

1111 1111 1111 1100_{two}

1111 1111 1111 1111 1111 1111 1111 1100_{two}

CS 61C L02 Number Representation (20)

Signed vs. Unsigned Variables

- °Java just declares integers int
 - Uses two's complement
- °C has declaration int also
 - · Declares variable as a signed integer
 - Uses two's complement
- °Also, C declaration unsigned int
 - Declares a unsigned integer
 - Treats 32-bit number as unsigned integer, so most significant bit is part of the number, not a sign bit

CS 61C L02 Number Representation (21)

Wawrzynek Spring 2006 © UCB

Numbers represented in memory

- Memory is a place to store bits
- °A word is a fixed number of bits (eg, 32) at an address
- Addresses are naturally represented as unsigned numbers in C

CS 61C L02 Number Representation (22)

Signed v. Unsigned Comparisons

°Y = 0011 1011 1001 1010 1000 1010 0000 0000_{two}

° Is X > Y?

unsigned: YES

signed: NO

CS 61C L02 Number Representation (23)

Wawrzynek Spring 2006 © UCB

What if too big?

- Binary bit patterns above are simply <u>representatives</u> of numbers. Strictly speaking they are called "numerals".
- Numbers really have an infinite number of digits
 - with almost all being same (00...0 or 11...1) except for a few of the rightmost digits
 - · Just don't normally show leading digits
- If result of add (or -,*,/) cannot be represented by these rightmost HW bits, <u>overflow</u> is said to have occurred.

CS 61C L02 Number Representation (24)

And in Conclusion...

- $^{\circ}\text{We represent "things" in computers as particular bit patterns: N bits <math display="inline">\Rightarrow 2^{N}$
 - · numbers, characters, ...
- Decimal for human calculations, binary to understand computers, hexadecimal to understand binary
- °2's complement universal in computing: cannot avoid, so learn
- Overflow: numbers infinite but computers finite, so errors occur

CS 61C L02 Number Representation (25)