
CS 61C L02 Number Representation (1) Wawrzynek Spring 2006 © UCB

1/20/2006
John Wawrzynek

(Warznek)
(www.cs.berkeley.edu/~johnw)

www-inst.eecs.berkeley.edu/~cs61c/

CS61C – Machine Structures

Lecture 2 – Number Representation

CS 61C L02 Number Representation (2) Wawrzynek Spring 2006 © UCB

From Lecture 1

°Read class info document.
°Get class account form and login by
5pm today.

°Look at class website often!
°Posted / handouts:

• Reading for this week: P&H Ch1 & 3.1-2
• Reading for Monday K&R Ch1-4
• Reading for W, F: K&R Ch5&6
• HW1 due Wednesday

CS 61C L02 Number Representation (3) Wawrzynek Spring 2006 © UCB

Decimal Numbers: Base 10

Digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

Example:
3271 =

(3x103) + (2x102) + (7x101) + (1x100)

CS 61C L02 Number Representation (4) Wawrzynek Spring 2006 © UCB

Numbers: positional notation
° Number Base B ⇒ B symbols per digit:

• Base 10 (Decimal): 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
Base 2 (Binary): 0, 1

° Number representation:
• d31d30 ... d2d1d0 is a 32 digit number
• value = d31x B31 + d30 x B30 + ... + d2 x B2 + d1 x B1 +

d0 x B0

° Binary: 0,1 (In binary digits called “bits”)
• 1011010 = 1x26 + 0x25 + 1x24 + 1x23 + 0x22 + 1x2 +

0x1 = 64 + 16 + 8 + 2 = 90
• Notice that 7 digit binary number turns into a 2

digit decimal number
• A base that converts to binary easily?

CS 61C L02 Number Representation (5) Wawrzynek Spring 2006 © UCB

Hexadecimal Numbers: Base 16

°Hexadecimal:
0,1,2,3,4,5,6,7,8,9, A, B, C, D, E, F

• Normal digits + 6 more from the alphabet

°Conversion: Binary⇔Hex
• 1 hex digit represents 16 decimal values
• 4 binary digits represent 16 decimal values
⇒ 1 hex digit replaces 4 binary digits

°Example:
• 1010 1100 0101 (binary) = ? (hex)

CS 61C L02 Number Representation (6) Wawrzynek Spring 2006 © UCB

Decimal vs. Hexadecimal vs. Binary
Examples:
1010 1100 0101 (binary)
= AC5 (hex)
10111 (binary)
= 0001 0111 (binary)
= 17 (hex)
3F9(hex)
= 11 1111 1001 (binary)

How do we convert between
hex and Decimal?

00 0 0000
01 1 0001
02 2 0010
03 3 0011
04 4 0100
05 5 0101
06 6 0110
07 7 0111
08 8 1000
09 9 1001
10 A 1010
11 B 1011
12 C 1100
13 D 1101
14 E 1110
15 F 1111

CS 61C L02 Number Representation (7) Wawrzynek Spring 2006 © UCB

What to do with representations of numbers?

° Just what we do with numbers!
• Add them
• Subtract them
• Multiply them
• Divide them
• Compare them

° Example: 10 + 7 = 17

• so simple to add in binary that we can
build circuits to do it

• subtraction also just as you would in
decimal

 1 0 1 0

+ 0 1 1 1

1 0 0 0 1

11

CS 61C L02 Number Representation (8) Wawrzynek Spring 2006 © UCB

Comparison

How do you tell if X > Y ?

CS 61C L02 Number Representation (9) Wawrzynek Spring 2006 © UCB

Which base do we use?

° Decimal: great for humans, especially when
doing arithmetic

° Hex: if human looking at long strings of
binary numbers, its much easier to convert
to hex and look 4 bits/symbol

• Terrible for arithmetic on paper

° Binary: what computers use;
you will learn how computers do +,-,*,/

• To a computer, numbers always binary
• Regardless of how number is written:

3210 == 0x20 == 1000002
• Use subscripts “ten”, “hex”, “two” in book,

slides when might be confusing

CS 61C L02 Number Representation (10) Wawrzynek Spring 2006 © UCB

Limits of Computer Numbers

° Bits can represent anything!
° Characters?

• 26 letters ⇒ 5 bits (25 = 32)
• upper/lower case + punctuation

 ⇒ 7 bits (in 8) (“ASCII”)
• standard code to cover all the world’s

languages ⇒ 16 bits (“unicode”)

° Logical values?
• 0 ⇒ False, 1 ⇒ True

° colors ? Ex:
° locations / addresses? commands?
° but N bits ⇒ only 2N things

Red (00) Green (01) Blue (11)

CS 61C L02 Number Representation (11) Wawrzynek Spring 2006 © UCB

How to Represent Negative Numbers?
° So far, unsigned numbers
° Obvious solution: define leftmost bit to be sign!

• 0 ⇒ +, 1 ⇒ -
• Rest of bits can be numerical value of number

° Representation called sign and magnitude
° MIPS uses 32-bit integers. +1ten would be:
0000 0000 0000 0000 0000 0000 0000 0001
° And - 1ten in sign and magnitude would be:
1000 0000 0000 0000 0000 0000 0000 0001

CS 61C L02 Number Representation (12) Wawrzynek Spring 2006 © UCB

Shortcomings of sign and magnitude?

°Arithmetic circuit complicated
• Special steps depending whether signs are
the same or not

°Also, Two zeros
• 0x00000000 = +0ten
• 0x80000000 = -0ten
• What would 2 0s mean for programming?

°Therefore sign and magnitude abandoned

CS 61C L02 Number Representation (13) Wawrzynek Spring 2006 © UCB

Another try: complement the bits

°Example: 710 = 001112 -710 = 110002

°Called One’s Complement
°Note: positive numbers have leading 0s,
negative numbers have leadings 1s.

00000 00001 01111...

111111111010000 ...

°What is -00000 ? Answer: 11111
°How many positive numbers in N bits?
°How many negative ones?

CS 61C L02 Number Representation (14) Wawrzynek Spring 2006 © UCB

Shortcomings of One’s complement?

°Arithmetic still a somewhat complicated.
°Still two zeros

• 0x00000000 = +0ten
• 0xFFFFFFFF = -0ten

°Although used for awhile on some
computer products, one’s complement was
eventually abandoned because another
solution was better.

CS 61C L02 Number Representation (15) Wawrzynek Spring 2006 © UCB

Standard Negative Number Representation
°What is result for unsigned numbers if tried
to subtract large number from a small one?
• Would try to borrow from string of leading 0s,
so result would have a string of leading 1s

- 3 - 4 ⇒ 00…0011 - 00…0100 = 11…1111
• With no obvious better alternative, pick
representation that made the hardware simple

• As with sign and magnitude,
leading 0s ⇒ positive, leading 1s ⇒ negative

- 000000...xxx is >=0, 111111...xxx is < 0
- except 1…1111 is -1, not -0 (as in sign & mag.)

°This representation is Two’s Complement

CS 61C L02 Number Representation (16) Wawrzynek Spring 2006 © UCB

2’s Complement Number “line”: N = 5

°2 N-1 non-
negatives

°2 N-1 negatives
°one zero
°how many
positives?

00000 00001
00010

11111
11110

10000 0111110001

0 1 2
-1

-2

-15 -16 15

.

.

.

.

.

.

-3
11101

-411100

CS 61C L02 Number Representation (17) Wawrzynek Spring 2006 © UCB

Two’s Complement for N=32
 0000 ... 0000 0000 0000 0000two = 0ten0000 ... 0000 0000 0000 0001two = 1ten0000 ... 0000 0000 0000 0010two = 2ten. . .

0111 ... 1111 1111 1111 1101two = 2,147,483,645ten0111 ... 1111 1111 1111 1110two = 2,147,483,646ten0111 ... 1111 1111 1111 1111two = 2,147,483,647ten1000 ... 0000 0000 0000 0000two = –2,147,483,648ten1000 ... 0000 0000 0000 0001two = –2,147,483,647ten1000 ... 0000 0000 0000 0010two = –2,147,483,646ten. . .
1111 ... 1111 1111 1111 1101two = –3ten1111 ... 1111 1111 1111 1110two = –2ten1111 ... 1111 1111 1111 1111two = –1ten

° One zero; 1st bit called sign bit
° 1 “extra” negative:no positive 2,147,483,648ten

CS 61C L02 Number Representation (18) Wawrzynek Spring 2006 © UCB

Two’s Complement Formula
°Can represent positive and negative numbers
in terms of the bit value times a power of 2:

d31 x -231 + d30 x 230 + ... + d2 x 22 + d1 x 21 + d0 x 20

°Example: 1111 1100two
= 1x-27 +1x26 +1x25+ 1x24+ 1x23+ 1x22+0x21+0x20

= -27 + 26 + 25 + 24 + 23 + 22 + 0 + 0
= -128 + 64 +32 + 16 + 8 + 4
= -128 + 124
= -4ten

CS 61C L02 Number Representation (19) Wawrzynek Spring 2006 © UCB

Two’s Complement shortcut: Negation
°Change every 0 to 1 and 1 to 0 (invert or
complement), then add 1 to the result

°Proof: Sum of number and its (one’s)
complement must be 111...111two

However, 111...111two= -1ten
Let x’ ⇒ one’s complement representation of x
Then x + x’ = -1 ⇒ x + x’ + 1 = 0 ⇒ x’ + 1 = -x

°Example: -4 to +4 to -4
x : 1111 1111 1111 1111 1111 1111 1111 1100twox’: 0000 0000 0000 0000 0000 0000 0000 0011two+1: 0000 0000 0000 0000 0000 0000 0000 0100two()’: 1111 1111 1111 1111 1111 1111 1111 1011two+1: 1111 1111 1111 1111 1111 1111 1111 1100two

CS 61C L02 Number Representation (20) Wawrzynek Spring 2006 © UCB

Two’s comp. shortcut: Sign extension
° Convert 2’s complement number rep. using

n bits to more than n bits
° Simply replicate the most significant bit

(sign bit) of smaller to fill new bits
•2’s comp. positive number has infinite 0s
•2’s comp. negative number has infinite 1s
•Binary representation hides leading bits;
sign extension restores some of them
•16-bit -4ten to 32-bit:

1111 1111 1111 1100two

1111 1111 1111 1111 1111 1111 1111 1100two

CS 61C L02 Number Representation (21) Wawrzynek Spring 2006 © UCB

Signed vs. Unsigned Variables

°Java just declares integers int
• Uses two’s complement

°C has declaration int also
• Declares variable as a signed integer
• Uses two’s complement

°Also, C declaration unsigned int
• Declares a unsigned integer
• Treats 32-bit number as unsigned
integer, so most significant bit is part of
the number, not a sign bit

CS 61C L02 Number Representation (22) Wawrzynek Spring 2006 © UCB

Numbers represented in memory

°Memory is a place to
store bits

°A word is a fixed
number of bits (eg, 32)
at an address

°Addresses are
naturally represented
as unsigned numbers
in C

101101100110

00000

11111 = 2k - 1

01110

CS 61C L02 Number Representation (23) Wawrzynek Spring 2006 © UCB

Signed v. Unsigned Comparisons

° X = 1111 1111 1111 1111 1111 1111 1111 1100two

° Y = 0011 1011 1001 1010 1000 1010 0000 0000two

° Is X > Y?
unsigned: YES
signed: NO

CS 61C L02 Number Representation (24) Wawrzynek Spring 2006 © UCB

What if too big?
° Binary bit patterns above are simply

representatives of numbers. Strictly speaking
they are called “numerals”.

° Numbers really have an infinite number of
digits
• with almost all being same (00…0 or 11…1) except

for a few of the rightmost digits
• Just don’t normally show leading digits

° If result of add (or -,*,/) cannot be represented
by these rightmost HW bits, overflow is said to
have occurred.

00000 00001 00010 1111111110
unsigned

CS 61C L02 Number Representation (25) Wawrzynek Spring 2006 © UCB

And in Conclusion...
°We represent “things” in computers as
particular bit patterns: N bits ⇒ 2N

• numbers, characters, ...

°Decimal for human calculations, binary
to understand computers, hexadecimal
to understand binary

°2’s complement universal in
computing: cannot avoid, so learn

°Overflow: numbers infinite but
computers finite, so errors occur

