
CS 61C L03 Introduction to C (1) Wawrzynek Spring 2006 © UCB

1/23/2006
John Wawrzynek

(www.cs.berkeley.edu/~johnw)

www-inst.eecs.berkeley.edu/~cs61c/

CS61C – Machine Structures

Lecture 3 – Introduction to
the C Programming Language

CS 61C L03 Introduction to C (2) Wawrzynek Spring 2006 © UCB

Administrivia : Near term
°Get cardkeys from CS main office
Soda Hall 3rd floor.

°Reading for this week:
• K&R Ch 1-4 (today, Ch 5-6 (W, F)

°HW
• HW1 due Wednesday 11:59pm.
• HW2 will be posted Wednesday.

°Project 1 - C Programming
• Goes online tomorrow AM
• Due Monday 2/6 (2 weeks from today)

CS 61C L03 Introduction to C (3) Wawrzynek Spring 2006 © UCB

Introduction to C

Why learn C?

CS 61C L03 Introduction to C (4) Wawrzynek Spring 2006 © UCB

Disclaimer

° Important: You will not learn how to
fully code in C in these lectures!
You’ll still need your C reference for
this course.

• K&R is a great reference.
- But… check online for more sources.

• “JAVA in a Nutshell” – O’Reilly.
- Chapter 2, “How Java Differs from C”.

• Brian Harvey’s course notes.
- On class website.

CS 61C L03 Introduction to C (5) Wawrzynek Spring 2006 © UCB

Compilation : Overview

C compilers take C and convert it into
an architecture specific machine code
(string of 1s and 0s).

• Unlike Java which converts to
architecture independent “bytecodes”.

• Unlike most Scheme environments which
interpret the code.

(These differ mainly in when your program
is converted to machine instructions.)

For C generally a 2 part process of
compiling .c files to .o files, then linking
the .o files into executables

CS 61C L03 Introduction to C (6) Wawrzynek Spring 2006 © UCB

Compilation : characteristics

°Great run-time performance: generally
much faster than Scheme or Java for
comparable code (because it
optimizes for a given architecture)

°OK compilation time: enhancements
in compilation procedure (Makefiles)
allow only modified files to be
recompiled

CS 61C L03 Introduction to C (7) Wawrzynek Spring 2006 © UCB

Compilation : Disadvantages

°All compiled files (including the
executable) are architecture specific,
depending on both the CPU type and
the operating system.

°Executable must be rebuilt on each
new system.

• Called “porting your code” to a new
architecture.

°The “change→compile→run [repeat]”
iteration cycle is slow

CS 61C L03 Introduction to C (8) Wawrzynek Spring 2006 © UCB

C vs. Java™ Overview (1/2)

Java
• Object-oriented
(OOP)

• “Methods”
• Class libraries of
data structures

• Automatic
memory
management

C
• No built-in object

abstraction. Data
separate from
methods.

• “Functions”
• C libraries are
lower-level

• Manual
memory
management

• Pointers

CS 61C L03 Introduction to C (9) Wawrzynek Spring 2006 © UCB

C vs. Java™ Overview (2/2)

Java
• High memory
overhead from
class libraries

• Relatively Slow
• Arrays initialize
to zero

• Syntax:
 /* comment */
// comment
System.out.print

C
• Low memory
overhead

• Relatively Fast
• Arrays initialize
to garbage

• Syntax:
/* comment */
printf

Newer C compilers allow Java style comments as well!

CS 61C L03 Introduction to C (10) Wawrzynek Spring 2006 © UCB

C Syntax: Variable Declarations
°Very similar to Java, but with a few minor
but important differences

°All variable declarations must
go before they are used
(at the beginning of the block).

°A variable may be initialized in its
declaration.

°Examples of declarations:
• correct: {

int a = 0, b = 10;
...

• incorrect: for (int i = 0; i < 10; i++)
C compiler now allow this in the case of “for” loops.

CS 61C L03 Introduction to C (11) Wawrzynek Spring 2006 © UCB

C Syntax: True or False?

°What evaluates to FALSE in C?
• 0 (integer)
• NULL (pointer: more on this later)
• no such thing as a Boolean

°What evaluates to TRUE in C?
• everything else…
• (same idea as in scheme: only #f is
false, everything else is true!)

CS 61C L03 Introduction to C (12) Wawrzynek Spring 2006 © UCB

C syntax : flow control

° Within a function, remarkably close to
Java constructs in methods (shows its
legacy) in terms of flow control
•if-else
•switch

•while and for
•do-while

CS 61C L03 Introduction to C (13) Wawrzynek Spring 2006 © UCB

C Syntax: main
°To get the main function to accept
arguments, use this:
int main (int argc, char *argv[])

°What does this mean?
•argc will contain the number of strings
on the command line (the executable
counts as one, plus one for each
argument).

- Example: unix% sort myFile
•argv is a pointer to an array containing
the arguments as strings (more on
pointers later).

CS 61C L03 Introduction to C (14) Wawrzynek Spring 2006 © UCB

Address vs. Value

°Consider memory to be a single huge
array:

• Each cell of the array has an address
associated with it.

• Each cell also stores some value
• Do you think they use signed or
unsigned numbers? Negative address?!

°Don’t confuse the address referring to
a memory location with the value
stored in that location.

23 42 101 102 103 104 105 ...

CS 61C L03 Introduction to C (15) Wawrzynek Spring 2006 © UCB

Pointers

°An address refers to a particular
memory location. In other words, it
points to a memory location.

°Pointer: A variable that contains the
address of another variable.

23 42 101 102 103 104 105 ...

x y

Location (address)

name
p

104

CS 61C L03 Introduction to C (16) Wawrzynek Spring 2006 © UCB

Pointers
°How to create a pointer:
& operator: get address of a variable

int *p, x; p ? x ?

x = 3;
p ? x 3

p =&x;
p x 3

°How get a value pointed to?
 * “dereference operator”: get value pointed to

printf(“p points to %d\n”,*p);

Note the “*” gets used
2 different ways in
this example. In the
declaration to indicate
that p is going to be a
pointer, and in the
printf to get the
value pointed to by p.

CS 61C L03 Introduction to C (17) Wawrzynek Spring 2006 © UCB

Pointers
°How to change a variable pointed to?

• Use dereference * operator on left of =

p x 5*p = 5;

p x 3

CS 61C L03 Introduction to C (18) Wawrzynek Spring 2006 © UCB

Pointers and Parameter Passing
°Java and C pass a parameter “by value”

• procedure/function gets a copy of the
parameter, so changing the copy cannot
change the original
 void addOne (int x) {

 x = x + 1;
}
 int y = 3;
 addOne(y);

y is still = 3

CS 61C L03 Introduction to C (19) Wawrzynek Spring 2006 © UCB

Pointers and Parameter Passing
°How to get a function to change a value?
 void addOne (int *p) {

*p = *p + 1;
}
 int y = 3;

 addOne(&y);

y is now = 4

CS 61C L03 Introduction to C (20) Wawrzynek Spring 2006 © UCB

Pointers

°Of course pointers are used to point to
any data type (int, char, a struct,
etc.).

°Normally a particular pointer variable
can only point to one type.
•void * is a type that can point to
anything (generic pointer)

• Use sparingly to help avoid program
bugs… and security issues… and a lot
of other bad things!

CS 61C L03 Introduction to C (21) Wawrzynek Spring 2006 © UCB

Find the Errors:

void main(); {
 int *p, x=5, y; // init
 y = *(p = &x) + 10;
 int z;
 flip-sign(p);
 printf("x=%d,y=%d,p=%d\n",x,y,p);
}
flip-sign(int *n){*n = -(*n)}

How many errors?

CS 61C L03 Introduction to C (23) Wawrzynek Spring 2006 © UCB

And in conclusion…

°All declarations go at the beginning of
each function.

°Only 0 and NULL evaluate to FALSE.
°All data is in memory. Each memory
location has an address to use to refer
to it and a value stored in it.

°A pointer is a C version of the
address.

• * “follows” a pointer to its value
• & gets the address of a value

