
CS 61C L08 C Introduction to MIPS (1) Wawrzynek Spring 2006 © UCB

2/3/2006
John Wawrzynek

(www.cs.berkeley.edu/~johnw)

www-inst.eecs.berkeley.edu/~cs61c/

CS61C – Machine Structures

Lecture 8 - Introduction to the MIPS
Processor and Assembly Language

CS 61C L08 C Introduction to MIPS (2) Wawrzynek Spring 2006 © UCB

Anatomy: 5 components of any Computer

Personal Computer

 Central
Processing
Unit (CPU)

Computer

Control

Datapath

Memory

(where
programs,
data
live when
running)

Devices

Input

Output

CS 61C L08 C Introduction to MIPS (3) Wawrzynek Spring 2006 © UCB

61C Levels of Representation

High Level Language
Program (e.g., C)

Assembly Language
Program (e.g.,MIPS)

Machine Language
Program (MIPS)

Hardware Architecture Description
(e.g., Verilog Language)

Compiler

Assembler

Machine
Interpretation

temp = v[k];
v[k] = v[k+1];
v[k+1] = temp;

lw $t0, 0($2)
lw $t1, 4($2)
sw $t1, 0($2)
sw $t0, 4($2)

0000 1001 1100 0110 1010 1111 0101 1000
1010 1111 0101 1000 0000 1001 1100 0110
1100 0110 1010 1111 0101 1000 0000 1001
0101 1000 0000 1001 1100 0110 1010 1111

Logic Circuit Description
(Verilog Language)

Architecture
Implementation

wire [31:0] dataBus;
regFile registers (databus);
ALU ALUBlock (inA, inB, databus);

wire w0;
XOR (w0, a, b);
AND (s, w0, a);

CS 61C L08 C Introduction to MIPS (4) Wawrzynek Spring 2006 © UCB

Assembly Language

° “Instructions” are the primitive operations
that a CPU may execute.

° Different CPUs implement slightly different
sets of instructions. The set of instructions
a particular CPU implements is called an
Instruction Set Architecture (ISA).

• Examples: Intel 80x86 (Pentium 4), IBM/Motorola
PowerPC (Macintosh), MIPS, Intel IA64, ARM, ...

° Assembly language is a textual version of
these instructions.

° Assembly language is used:
• As an output of the C compiler, or
• As a means to directly program the CPU. Why

would anyone want to do this?!

CS 61C L08 C Introduction to MIPS (5) Wawrzynek Spring 2006 © UCB

Book: Programming From the Ground Up
“A new book was just released which is based on
a new concept - teaching computer science
through assembly language (Linux x86 assembly
language, to be exact). This book teaches how
the machine itself operates, rather than just the
language. I've found that the key difference
between mediocre and excellent programmers is
whether or not they know assembly language.
Those that do tend to understand computers
themselves at a much deeper level. Although
[almost!] unheard of today, this concept isn't really
all that new -- there used to not be much choice in
years past. Apple computers came with only
BASIC and assembly language, and there were
books available on assembly language for kids.
This is why the old-timers are often viewed as
'wizards': they had to know assembly language
programming.”
 -- slashdot.org comment, 2004-02-05

CS 61C L08 C Introduction to MIPS (6) Wawrzynek Spring 2006 © UCB

Instruction Set Architectures

°Early trend was to add more and more
instructions to new CPUs to do
elaborate operations

• VAX architecture had an instruction to
evaluate polynomials!

°RISC philosophy (Cocke IBM,
Patterson, 1980s) –
Reduced Instruction Set Computing

• Keep the instruction set small and simple,
makes it easier to build fast hardware.

• Let software do complicated operations by
composing simpler ones.

CS 61C L08 C Introduction to MIPS (7) Wawrzynek Spring 2006 © UCB

MIPS Architecture
°MIPS – semiconductor company
that built one of the first
commercial RISC architectures

°We will study the MIPS
architecture in some detail in this
class (also used in upper division
courses CS 152, 162, 164)

°Why MIPS instead of Intel 80x86?
• MIPS is simple, elegant. Don’t want
to get bogged down in gritty details.

• MIPS widely used in embedded apps.

CS 61C L08 C Introduction to MIPS (8) Wawrzynek Spring 2006 © UCB

Assembly Variables: Registers (1/4)
°Unlike HLL like C or Java, MIPS
assembly cannot operate directly on
variables in memory

• Why not? Keep Hardware Simple

°Assembly Operands are registers
• limited number of special locations built
directly into the CPU

• operations can only be performed on
these!

°Benefit: Since registers are directly in
the CPU, they are very fast
(faster than 1 billionth of a second)

CS 61C L08 C Introduction to MIPS (9) Wawrzynek Spring 2006 © UCB

Assembly Variables: Registers (2/4)
°Drawback: Since registers are in the
CPU and must be fast, there are a
limited number of them

• Solution: MIPS code must be very
carefully put together to efficiently use
registers

°MIPS has 32 registers
• Why only 32?

- Smaller is faster
- Small register addresses keeps instruction

representation small.

°Each MIPS register is 32 bits wide
• Groups of 32 bits called a word in MIPS

CS 61C L08 C Introduction to MIPS (10) Wawrzynek Spring 2006 © UCB

Assembly Variables: Registers (3/4)

°Registers are numbered from
0 to 31

°Each register can be referred
to by number or name

°Number references:
$0, $1, $2, … $30, $31

0
1
2

31

.

.

.

Register File

32 bits

CS 61C L08 C Introduction to MIPS (11) Wawrzynek Spring 2006 © UCB

Assembly Variables: Registers (4/4)

°By convention, each register also has
a name to make it easier to code

°For now:
$16 - $23 $s0 - $s7

(correspond to C variables)
$8 - $15 $t0 - $t7

(correspond to temporary variables)
Later will explain other 16 register names

° In general, use names to make your
code more readable

CS 61C L08 C Introduction to MIPS (12) Wawrzynek Spring 2006 © UCB

C, Java variables vs. registers

° In C (and most High Level Languages)
variables declared first and given a type

• Example:
int fahr, celsius;
char a, b, c, d, e;

°Each variable can ONLY represent a
value of the type it was declared as
(cannot mix and match int and char
variables).

° In Assembly Language, the registers
have no type; operation determines how
register contents are treated

CS 61C L08 C Introduction to MIPS (13) Wawrzynek Spring 2006 © UCB

Comments in Assembly

°Another way to make your code more
readable: comments!

°Hash (#) is used for MIPS comments
• anything from hash mark to end of line is
a comment and will be ignored

°Note: Different from C.
• C comments have format
/* comment */
so they can span many lines

CS 61C L08 C Introduction to MIPS (14) Wawrzynek Spring 2006 © UCB

Assembly Instructions

° In assembly language, each statement
(called an Instruction), executes
exactly one of a short list of simple
commands

°Unlike in C (and most other High Level
Languages), each line of assembly
code contains at most 1 instruction

° Instructions are related to operations
(=, +, -, *, /) in C or Java

°Ok, enough already…gimme my MIPS!

CS 61C L08 C Introduction to MIPS (15) Wawrzynek Spring 2006 © UCB

MIPS Addition and Subtraction (1/4)
°Syntax of Instructions:

1 2,3,4
where:
1) operation by name
2) operand getting result (“destination”)
3) First operand for operation (“source1”)
4) Second operand for operation (“source2”)

°Syntax is rigid:
• 1 operator, 3 operands
• Why? Keep Hardware simple via regularity

CS 61C L08 C Introduction to MIPS (16) Wawrzynek Spring 2006 © UCB

Addition and Subtraction of Integers (2/4)

°Addition in Assembly
• Example: add $s0,$s1,$s2 (in MIPS)
Equivalent to: a = b + c (in C)

where MIPS registers $s0,$s1,$s2 are
associated with C variables a, b, c

°Subtraction in Assembly
• Example: sub $s3,$s4,$s5 (in MIPS)
Equivalent to: d = e - f (in C)

where MIPS registers $s3,$s4,$s5 are
associated with C variables d, e, f

CS 61C L08 C Introduction to MIPS (17) Wawrzynek Spring 2006 © UCB

Addition and Subtraction of Integers (3/4)

°How do the following C statement?
a = b + c + d - e;

°Break into multiple instructions
add $t0, $s1, $s2 # temp = b + c
add $t0, $t0, $s3 # temp = temp + d
sub $s0, $t0, $s4 # a = temp - e

°Notice: A single line of C may break up
into several lines of MIPS.

°Notice: Everything after the hash mark
on each line is ignored (comments)

CS 61C L08 C Introduction to MIPS (18) Wawrzynek Spring 2006 © UCB

Addition and Subtraction of Integers (4/4)
°How do we do this?

f = (g + h) - (i + j);

°Use intermediate temporary register
add $t0,$s1,$s2 # temp = g + h
add $t1,$s3,$s4 # temp = i + j
sub $s0,$t0,$t1 # f=(g+h)-(i+j)

CS 61C L08 C Introduction to MIPS (19) Wawrzynek Spring 2006 © UCB

Register Zero
°The number zero (0), appears very
often in code.

°MIPS defines register zero ($0 or
$zero) to always have the value 0; eg
add $s0,$s1,$zero (in MIPS)
f = g (in C)

where MIPS registers $s0,$s1 are
associated with C variables f, g

°$0 is unchangeable, so an instruction
add $zero,$zero,$s0

will not do anything!

CS 61C L08 C Introduction to MIPS (20) Wawrzynek Spring 2006 © UCB

Immediates

° Immediates are numerical constants.
°They appear often in code, so there
are special instructions for them.

°Add Immediate:
addi $s0,$s1,10 (in MIPS)
f = g + 10 (in C)

where MIPS registers $s0,$s1 are
associated with C variables f, g

°Syntax similar to add instruction,
except that last argument is a number
instead of a register.

CS 61C L08 C Introduction to MIPS (21) Wawrzynek Spring 2006 © UCB

Immediates

°There is no Subtract Immediate in
MIPS: Why?

°Limit types of operations that can be
done to absolute minimum

• if an operation can be decomposed into a
simpler operation, don’t include it
•addi …, -X = subi …, X => so no subi

°addi $s0,$s1,-10 (in MIPS)
f = g - 10 (in C)

where MIPS registers $s0,$s1 are
associated with C variables f, g

CS 61C L08 C Introduction to MIPS (22) Wawrzynek Spring 2006 © UCB

Quiz:

A. Types are associated with declaration
in C (normally), but are associated with
instruction (operator) in MIPS.

B. Since there are only 8 local ($s) and 8
temp ($t) variables, we can’t write
MIPS for C exprs that contain > 16 vars.

C. If p (stored in $s0) were a pointer to an
array of ints, then p++; would be
addi $s0 $s0 1

True or False

CS 61C L08 C Introduction to MIPS (23) Wawrzynek Spring 2006 © UCB

“And in Conclusion…”

° In MIPS Assembly Language:
• Registers replace C variables
• One Instruction (simple operation) per line
• Simpler is Better
• Smaller is Faster

°New Instructions:
add, addi, sub

°New Registers:
C Variables: $s0 - $s7
Temporary Variables: $t0 - $t9
Zero: $zero

