CS61C — Machine Structures

Lecture 12 - MIPS Procedures Il &
Logical Ops

2/13/2006
John Wawrzynek
(www.cs.berkeley.edu/~johnw)

www-inst.eecs.berkeley.edu/~cs61c/

CS 61C L12 MIPS Procedures Il / Logical (1) Wawrzynek Spring 2006 © UCB

Review
°Functions called with jal, return with jr $ra.

°The stack is your friend: Use it to save
anything you need. Just be sure to leave it the

way you found it.

°Instructions we know so far
Arithmetic: add, addi, sub, addu, addiu, subu
Memory: 1w, sw
Decision: beq, bne, slt, slti, sltu, sltiu
Unconditional Branches (Jumps): j, jal, jr

° Registers we know so far
- All of them!
« There are CONVENTIONS when calling procedures!

CS 61C L12 MIPS Procedures Il / Logical (2) Wawrzynek Spring 2006 © UCB

Register Conventions (1/4)
°CalleR: the calling function
°CalleE: the function being called

°When callee returns from executing,
the caller needs to know which _
registers may have changed and which
are guaranteed to be unchanged.

°Register Conventions: A setof
generally accepted rules as to which
registers will be unchanged after a
procedure call (jal) and which may be
changed.

CS 61C L12 MIPS Procedures Il / Logical (3) Wawrzynek Spring 2006 © UCB

Register Conventions (2/4) - saved

°$0: No Change. Always 0.

°$s0-$s7: Restore if you change. Very
important, that’s why they’re called
saved registers. If the callee changes
these in any way, it must restore the
original values before returning.

°$sp: Restore if you change. The stack
Bomter must point to the same place
efore and after the jal call, or else
the caller won’t be able to restore
values from the stack.

°HINT -- All saved registers start with S!

CS 61C L12 MIPS Procedures Il / Logical (4) Wawrzynek Spring 2006 © UCB

Register Conventions (3/4) - volatile

°$ra: Can Change. The jal call itself
will change this reglster Caller needs
to save on stack if hested call.

°$v0-$vl: Can Change. These will
contain the new returned values.

°$a0-$a3: Can change. These are
volatile argument registers. Caller
{lﬁeegglfo save if they'll need them after

?] t0-$t9: Can change. That s why
ey re called temporar){
roce ure may change them at any
e, Caller needs to save if they’ II
need them afterwards.

CS 61C L12 MIPS Procedures Il / Logical (5) Wawrzynek Spring 2006 © UCB

Register Conventions (4/4)

°What do these conventions mean?

« If function R calls function E, then
function R must save any temporary
registers that it may be using onto the
stack before making a jal call.

* Function E must save any S (saved)
registers it intends to use before garbling
up their values

- Remember: Caller/callee need to save
only temporary/saved registers they are
using, not all registers.

CS 61C L12 MIPS Procedures Il / Logical (6) Wawrzynek Spring 2006 © UCB

Administrivia
°Midterm Exam |
* Friday 2/24 6-8pm, 1 Pimentel
(2 weeks from today)
- Review Session TBA

°Project 2 due earlier that week
* Tuesday 2/21 11:59pm

°HW4 due next Wednesday
°No HW due 2/22

CS 61C L12 MIPS Procedures Il / Logical (7) Wawrzynek Spring 2006 © UCB

Example: Fibonacci Numbers 1/8

°The Fibonacci numbers are defined as
follows: F(n; =F(n-1)+ F(n-2),
F(0) and F(1) are defined to be 1

°In scheme, this could be written:

(define (Fib n)
(cond ((=n 0) 1)
((=n 1) 1)
(else (+ (Fib (- n 1))
(Fib (- n 2)))))

CS 61C L12 MIPS Procedures Il / Logical (8) Wawrzynek Spring 2006 © UCB

Example: Fibonacci Numbers 2/8

°Rewriting this in C we have:
int fib(int n) {
if(n == 0) { return 1; }
if(n == 1) { return 1;
return (fib(n - 1) + fib(n - 2));

CS 61C L12 MIPS Procedures Il / Logical (9) Wawrzynek Spring 2006 © UCB

Example: Fibonacci Numbers 3/8

°Now, let’s translate this to MIPS!

°You will need space for three words on the
stack

°The function will use one $s register, $s0
°Write the Prologue:

fib:

addi $sp, $sp, -12 # Space for three words

sw Sra, 8(S$sp) # Save return address

sw $s0, 4(S$sp) # Save sO

CS 61C L12 MIPS Procedures Il / Logical (10) Wawrzynek Spring 2006 © UCB

Example: Fibonacci Numbers 4/8

°Now write the Epilogue:

fin:
lw $s0, 4($sp) # Restore $s0
lw $ra, 8($sp) # Restore return address

addi $sp, $sp, 12 # Pop the stack frame
jr S$ra # Return to caller

CS 61C L12 MIPS Procedures Il / Logical (11) Wawrzynek Spring 2006 © UCB

Example: Fibonacci Numbers 5/8

° Finally, write the body. The C code is below. Start
by translating the lines indicated in the comments

int fib(int n) {

if(n == 0) { return 1; } /*Translate Me!*/
if(n == 1) { return 1; } /*Translate Me!*/
return (fib(n - 1) + fib(n - 2));
}

addi $v0, $zero, 1 #%$v0=1

beq $a0, $zero, fin #

addi $t0, $zero, 1 #$t0=1

beq $a0, $t0, fin #

Continued on next slide.

CS 61C L12 MIPS Procedures Il / Logical (12) Wawrzynek Spring 2006 © UCB

Example: Fibonacci Numbers 6/8

° Almost there, but be careful, this part is tricky!
int fib(int n) {

éetﬁrn.(fib(n - 1) + fib(n - 2));

}
addi $a0, $a0, -1 #%0=n-1
sw $a0, 0($sp) # Need $a0 after jal
jal fib # fib(n-1)
lw $a0, 0($sp) # restore $a0
addi $a0, $a0, -1 # $a0=n-2

CS 61C L12 MIPS Procedures Il / Logical (13) Wawrzynek Spring 2006 © UCB

Example: Fibonacci Numbers 7/8
° Remember that $v0 is caller saved!
int fib(int n) {

éetﬁrn.(fib(n - 1) + fib(n - 2));
}

add $s0, $v0, S$zero # Place fib(n—-1)
somewhere it won’t get
clobbered
jal fib # fib(n - 2)
add $v0, $v0, $s0 # $vO0 = fib(n-1) + fib(n-2)
To the epilogue and beyond.

CS 61C L12 MIPS Procedures Il / Logical (14) Wawrzynek Spring 2006 © UCB

Example: Fibonacci Numbers 8/8

° Here’s the complete code for reference:

fib: addi $sp, $sp, -12
sw $ra, 8($sp)
sw $s0, 4($sp)
addi $v0, $zero, 1
beq $a0, $zero, fin
addi $t0, $zero, 1
beq $a0, $t0, fin

addi $aol $aol -1 fin:

sw $a0, 0($sp)
jal f£ib

CS 61C L12 MIPS Procedures Il / Logical (15)

Bitwise Operations

lw $a0, 0($sp)

addi $a0, $a0, -1
add $s0, $v0, $zero
jal fib

add $v0, $v0, $s0O
1w $s0, 4($sp)

lw $ra, 8($sp)

addi $sp, $sp, 12

jr $ra

Wawrzynek Spring 2006 © UCB

°Up until now, we’ve done arithmetic (add,
sub,addi), memory access (1w and sw),

and branches and jumps.

° All of these instructions view contents of
register as a single quantity (such as a
signed or unsigned integer

°New Perspective: View register as 32 raw
bits rather than as a single 32-bit number

° Since registers are composed of 32 bits, we
may want to access individual bits (or
groups of bits) rather than the whole.

°Introduce two new classes of instructions:

* Logical & Shift Ops

CS 61C L12 MIPS Procedures Il / Logical (16)

Wawrzynek Spring 2006 © UCB

Logical Operators (1/3)

°Two basic logical operators:
* AND: outputs 1 only if both inputs are 1
* OR: outputs 1 if at least one input is 1
°Truth Table: standard table listing all

possible combinations of inputs and
resultant output for each. E.g.,

A B | AANDB | AORB
0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 1

Logical Operators (2/3)

°Logical Instruction Syntax:
1 2,34
* where
1) operation name
2) register that will receive value
3) first operand (register)
4) second operand (register) or
immediate (numerical constant)

°In general, can define them to accept > 2
inputs, but in the case of MIPS
assembly, these accept exactly 2 inputs
and produce 1 output

+ Again, rigid syntax, simpler hardware

CS 61C L12 MIPS Procedures Il / Logical (18) Wawrzynek Spring 2006 © UCB

Logical Operators (3/3)

°Instruction Names:

«and, or: Both of these expect the third
argument to be a register

«andi, ori: Both of these expect the third
argument to be an immediate

°MIPS Logical Operators are all bitwise,
meaning that bit 0 of the output is
produced by the respective bit 0’s of
the inputs, bit 1 by the bit 1’s, etc.

- C: Bitwise AND is & (e.g., z =

=x &yj/)
-C: Bitwise ORis | (e.g.,z = x | y;)

CS 61C L12 MIPS Procedures Il / Logical (19)

Wawrzynek Spring 2006 © UCB

Uses for Logical Operators (1/3)

°Note that anding a bit with 0 produces a 0

at the output while anding a bit with 1
produces the original bit.

°This can be used to create a mask.
- Example:

1011 0110 1010 0100 00111101 1001 1010
mask:0000 0000 0000 0000 00001111 1111 1111
* The result of anding these:

0000 0000 0000 0000 0000(1101 1001 1010
mask last 12 bits

CS 61C L12 MIPS Procedures Il / Logical (20) Wawrzynek Spring 2006 © UCB

Uses for Logical Operators (2/3)

°The second bitstring in the example is
called a mask. It is used to isolate the
rightmost 12 bits of the first bitstring
by masking out the rest of the string
(e.g. setting it to all 0s).

°Thus, the and operator can be used to
set certain portions of a bitstring to
0s, while leaving the rest alone.

* In particular, if the first bitstring in the
above example were in $t0, then the
following instruction would mask it:

andi $t0,$t0,0xFFF

CS 61C L12 MIPS Procedures Il / Logical (21) Wawrzynek Spring 2006 © UCB

Uses for Logical Operators (3/3)

°Similarly, note that oring a bit with 1
produces a 1 at the output while oring
a bit with 0 produces the original bit.

°This can be used to force certain bits
of a string to 1s.

- For example, if $t0 contains
0x12345678, then after this instruction:

ori $t0, $t0, OxFFFF

*... $t0 contains 0x1234FFFF (e.g. the
high-order 16 bits are untouched, while
the low-order 16 bits are forced to 1s).

CS 61C L12 MIPS Procedures Il / Logical (22) Wawrzynek Spring 2006 © UCB

Shift Instructions (review) (1/4)

°Move (shift) all the bits in a word to the
left or right by a number of bits.

- Example: shift right by 8 bits
0001 0010 0011 0100 0101 0110 0111 1000

T T

0000 0000 0001 0010 0011 0100 0101 0110
- Example: shift left by 8 bits
0001 0010 0011 0100 0101 0110 0111 1000

0011 0100 0101 0110 0111 1000 0000 0000

CS 61C L12 MIPS Procedures Il / Logical (23) Wawrzynek Spring 2006 © UCB

Shift Instructions (2/4)

° Shift Instruction Syntax:
1 234
* where
1) operation name
2) register that will receive value
3) first operand (register)
4) shift amount (constant < 32)

° MIPS shift instructions:
1. s11 (shift left logical): shifts left and fills
emptied bits with 0s
2. srl (shift right logical): shifts right and fills
emptied bits with Os
3. sra (shift right arithmetic): shifts right and fills
emptied bits by sign extending

CS 61C L12 MIPS Procedures Il / Logical (24) Wawrzynek Spring 2006 © UCB

Shift Instructions (3/4)

°Example: shift right arith by 8 bits
B)0001 0010 0011 0100 0101 0110 0111 1000

0000 0006 0001 0010 0011 0100 0101 O1 16

°Example: shift right arith by 8 bits
m=)1001 0010 0011 0100 0101 0110 0111 1000

1111 1111 1001 0010 0011 0100 0101 0110

CS 61C L12 MIPS Procedures Il / Logical (25) Wawrzynek Spring 2006 © UCB

Shift Instructions (4/4)

°Since shifting may be faster than
multiplication, a good compiler
usually notices when C code
multiplies by a power of 2 and
compiles it to a shift instruction:

a *= 8; (inC)
would compile to:
sll $s0,%$s0,3 (in MIPS)
°Likewise, shift right to divide by
powers of 2 (rounds towards -)
*remember to use sra

CS 61C L12 MIPS Procedures Il / Logical (26) Wawrzynek Spring 2006 © UCB

Uses for Shift Instructions (1/4)

°Suppose we want to isolate byte 0
glghtmost 8 bits) of a word in $t0.
imply use:

andi $t0,$t0, 0xFF
°SuP$ose we want to isolate b te 1
(bit 15 to bit 8) of a word in $t0.
can use:

andi $t0,$t0,0xFF00

but then we still need to shift to the
right by 8 bits...

CS 61C L12 MIPS Procedures Il / Logical (27) Wawrzynek Spring 2006 © UCB

Uses for Shift Instructions (2/4)

°Could use instead:

sll $t0,$t0,16
srl $t0,$t0,24

0001 0010 0011 0100 0101 0110 0111 1000

0101 0110 0111 1000 0000 0000 0000 0000

>

0000 0000 0000 0000 0000 0000 0101 0110

CS 61C L12 MIPS Procedures Il / Logical (28) Wawrzynek Spring 2006 © UCB

Uses for Shift Instructions (3/4)

°In decimal:
- Multiplying by 10 is same as shifting left
by 1:
- 714,,x10,,=7140,,
- 56,0 x 10,, = 560,
+ Multiplying by 100 is same as shifting left
by 2:
- 714,,x100,, = 71400,,
- 56,4, x 100,, = 5600,,
. lI\)Ilultiplying by 10" is same as shifting left
yn

CS 61C L12 MIPS Procedures Il / Logical (29) Wawrzynek Spring 2006 © UCB

Uses for Shift Instructions (4/4)

°In binary:
+ Multiplying by 2 is same as shifting left
by 1:
- 11,x10,=110,
- 1010, x 10, = 10100,
* Multiplying by 4 is same as shifting left
by 2:
- 11, x 100, = 1100,
- 1010, x 100, = 101000,
. lI\)Ilultiplying by 2" is same as shifting left
yn

CS 61C L12 MIPS Procedures Il / Logical (30) Wawrzynek Spring 2006 © UCB

“And in Conclusion...”

°Register Conventions; Each register has a
Purpose and limits to its usage. Learn
hese and follow them, even if you’re writing
all the code yourself.

° Logical and Shift Instructions

ﬁerate on bits individually, unlike arithmetic,
ich operate on entire word.

* Use to isolate fields, either by masking or by
shifting back and forth.

+ Use shift left logical, s11, for multiplication by
powers of 2

+ Use shift right arithmetic, sra,for division by
powers of 2.

°New Instructions:
and,andi, or,ori, sll,srl,sra

CS 61C L12 MIPS Procedures Il / Logical (31) Wawrzynek Spring 2006 © UCB

