
CS 61C L19 Running a Program II (1) Wawrzynek Spring 2006 © UCB

3/3/2006
John Wawrzynek

(www.cs.berkeley.edu/~johnw)

www-inst.eecs.berkeley.edu/~cs61c/

CS61C – Machine Structures

Lecture 19 - Running a Program II
aka Compiling, Assembling, Linking, Loading

CS 61C L19 Running a Program II (2) Wawrzynek Spring 2006 © UCB

Review
C program: foo.c

Compiler
Assembly program: foo.s

Assembler

Linker
Executable(mach lang pgm): a.out

Loader
Memory

Object(mach lang module): foo.o

lib.o

CS 61C L19 Running a Program II (3) Wawrzynek Spring 2006 © UCB

Object File Format (review)
° object file header: size and position of the other

pieces of the object file
° text segment: the machine code
° data segment: binary representation of the data in the

source file
° relocation information: identifies lines of code that

need to be “handled”
° symbol table: list of this file’s labels and data that can

be referenced
° debugging information
° A standard format is ELF (except MS)

http://www.skyfree.org/linux/references/ELF_Format.pdf

CS 61C L19 Running a Program II (4) Wawrzynek Spring 2006 © UCB

Where Are We Now?
C program: foo.c

Assembly program: foo.s

Executable(mach lang pgm): a.out

Compiler

Assembler

Linker

Loader
Memory

Object(mach lang module): foo.o

lib.o

CS 61C L19 Running a Program II (5) Wawrzynek Spring 2006 © UCB

Linker (1/3)
° Input: Object Code files, information
tables (e.g., foo.o,libc.o for MIPS)

°Output: Executable Code
(e.g., a.out for MIPS)

°Combines several object (.o) files into
a single executable (“linking”)

°Enable Separate Compilation of files
• Changes to one file do not require
recompilation of whole program

- Windows NT source is >40 M lines of code!
• Old name “Link Editor” from editing the
“links” in jump and link instructions

CS 61C L19 Running a Program II (6) Wawrzynek Spring 2006 © UCB

Linker (2/3)
.o file 1
text 1
data 1
info 1

.o file 2
text 2
data 2
info 2

Linker

a.out
Relocated text 1
Relocated text 2
Relocated data 1
Relocated data 2

CS 61C L19 Running a Program II (7) Wawrzynek Spring 2006 © UCB

Linker (3/3)

°Step 1: Take text segment from each
.o file and put them together.

°Step 2: Take data segment from each
.o file, put them together, and
concatenate this onto end of text
segments.

°Step 3: Resolve References
• Go through Relocation Table and handle
each entry

• That is, fill in all absolute addresses

CS 61C L19 Running a Program II (8) Wawrzynek Spring 2006 © UCB

Four Types of Addresses we’ll discuss

°PC-Relative Addressing (beq, bne):
never relocate

°Absolute Address (j, jal): always
relocate

°External Reference (usually jal):
always relocate

°Data Reference (often lui and ori):
always relocate

CS 61C L19 Running a Program II (9) Wawrzynek Spring 2006 © UCB

Absolute Addresses in MIPS
°Which instructions need relocation
editing?

°J-format: jump, jump and link
j/jal xxxxx

°Loads and stores to variables in static
area, relative to global pointer
lw/sw $gp $x address

°What about conditional branches?
beq/bne $rs $rt address
°PC-relative addressing preserved even
if code moves

CS 61C L19 Running a Program II (10) Wawrzynek Spring 2006 © UCB

Resolving References (1/2)

°Linker assumes first word of first text
segment is at address 0x00000000.

(More on this later when we study “virtual
memory”)

°Linker knows:
• length of each text and data segment
• ordering of text and data segments

°Linker calculates:
• absolute address of each label to be
jumped to (internal or external) and each
piece of data being referenced

CS 61C L19 Running a Program II (11) Wawrzynek Spring 2006 © UCB

Resolving References (2/2)

°To resolve references:
• search for reference (data or label) in all
“user” symbol tables

• if not found, search library files
(for example, for printf)

• once absolute address is determined, fill
in the machine code appropriately

°Output of linker: executable file
containing text and data (plus header)

CS 61C L19 Running a Program II (12) Wawrzynek Spring 2006 © UCB

Static vs Dynamically linked libraries

°What we’ve described is the traditional
way: “statically-linked” approach

• The library is now part of the executable,
so if the library updates, we don’t get the
fix (have to recompile if we have source)

• It includes the entire library even if not all
of it will be used.

• Executable is self-contained.

°An alternative is dynamically linked
libraries (DLL), common on Windows &
UNIX platforms

CS 61C L19 Running a Program II (13) Wawrzynek Spring 2006 © UCB

Dynamically linked libraries

°Space/time savings
• Storing a program requires less disk space
• Sending a program requires less time
• Executing two programs requires less
memory (if they share a library)

°Upgrades
• By replacing one file (libXYZ.so), you upgrade
every program that uses library "XYZ”

This does add quite a bit of complexity to the
compiler, linker, and operating system. However,
provides many benefits:

CS 61C L19 Running a Program II (14) Wawrzynek Spring 2006 © UCB

Dynamically linked libraries

° The prevailing approach to dynamic
linking uses machine code as the
“lowest common denominator”

• the linker does not use information about
how the program or library was compiled
i.e., what compiler or language)

• this can be described as "linking at the
machine code level”

• This isn't the only way to do it...

CS 61C L19 Running a Program II (15) Wawrzynek Spring 2006 © UCB

Administrivia…
° Exam Regrade requests must be in writing.

• Attach a written cover-sheet with your exam,
explaining your concern.

• Turn-in in class, no later than Monday.

° Remember to work on project 3: MIPS
instruction interpreter.

° Impending Grade Freeze!
• HW 1-6, Project 1&2 grades must be settled before

Spring break.
• Use glookup to verify your grades.

CS 61C L19 Running a Program II (16) Wawrzynek Spring 2006 © UCB

Where Are We Now?
C program: foo.c

Assembly program: foo.s

Executable(mach lang pgm): a.out

Compiler

Assembler

Linker

Loader
Memory

Object(mach lang module): foo.o

lib.o

CS 61C L19 Running a Program II (17) Wawrzynek Spring 2006 © UCB

Loader (1/3)

° Input: Executable Code
(e.g., a.out for MIPS)

°Output: (program is run)
°Executable files are stored on disk.
°When one is run, loader’s job is to
load it into memory and start it
running.

° In reality, loader is the operating
system (OS)

• loading is one of the OS tasks

CS 61C L19 Running a Program II (18) Wawrzynek Spring 2006 © UCB

Loader (2/3)
°So what does a loader do?
°Reads executable file’s header to
determine size of text and data
segments

°Creates new address space for
program large enough to hold text and
data segments, along with a stack
segment

°Copies instructions and data from
executable file into the new address
space

CS 61C L19 Running a Program II (19) Wawrzynek Spring 2006 © UCB

Loader (3/3)

°Copies arguments passed to the
program onto the stack

° Initializes machine registers
• Most registers cleared, but stack pointer
assigned address of 1st free stack
location

°Jumps to start-up routine that copies
program’s arguments from stack to
registers and sets the PC

• If main routine returns, start-up routine
terminates program with the exit system
call

CS 61C L19 Running a Program II (20) Wawrzynek Spring 2006 © UCB

Example: C ⇒ Asm ⇒ Obj ⇒ Exe ⇒ Run

#include <stdio.h>

int main (int argc, char *argv[]) {

 int i, sum = 0;

 for (i = 0; i <= 100; i++)
 sum = sum + i * i;

 printf ("The sum from 0 .. 100 is %d\n",
sum);

}

C Program Source Code: prog.c

“printf” lives in “libc”

CS 61C L19 Running a Program II (21) Wawrzynek Spring 2006 © UCB

Compilation: MAL
.text
.align 2
.globl main
main:
subu $sp,$sp,32
sw $ra, 20($sp)
sd $a0, 32($sp)
sw $0, 24($sp)
sw $0, 28($sp)
loop:
lw $t6, 28($sp)
mul $t7, $t6,$t6
lw $t8, 24($sp)
addu $t9,$t8,$t7
sw $t9, 24($sp)

 addu $t0, $t6, 1
sw $t0, 28($sp)
ble $t0,100, loop
la $a0, str
lw $a1, 24($sp)
jal printf
move $v0, $0
lw $ra, 20($sp)
addiu $sp,$sp,32
jr $ra
.data
.align 0
str:
.asciiz "The sum
from 0 .. 100 is
%d\n"

Where are
7 pseudo-
instructions?

CS 61C L19 Running a Program II (22) Wawrzynek Spring 2006 © UCB

.text

.align 2

.globl main
main:
subu $sp,$sp,32
sw $ra, 20($sp)
sd $a0, 32($sp)
sw $0, 24($sp)
sw $0, 28($sp)
loop:
lw $t6, 28($sp)
mul $t7, $t6,$t6
lw $t8, 24($sp)
addu $t9,$t8,$t7
sw $t9, 24($sp)

 addu $t0, $t6, 1
sw $t0, 28($sp)
ble $t0,100, loop
la $a0, str
lw $a1, 24($sp)
jal printf
move $v0, $0
lw $ra, 20($sp)
addiu $sp,$sp,32
jr $ra
.data
.align 0
str:
.asciiz "The sum
from 0 .. 100 is
%d\n"

7 pseudo-
instructions
underlined

Compilation: MAL

CS 61C L19 Running a Program II (23) Wawrzynek Spring 2006 © UCB

Assembly step 1:

00 addiu $29,$29,-32
04 sw $31,20($29)
08 sw $4, 32($29)
0c sw $5, 36($29)
10 sw $0, 24($29)
14 sw $0, 28($29)
18 lw $14, 28($29)
1c multu $14, $14
20 mflo $15
24 lw $24, 24($29)
28 addu $25,$24,$15
2c sw $25, 24($29)

30 addiu $8,$14, 1
34 sw $8,28($29)
38 slti $1,$8, 101
3c bne $1,$0, loop
40 lui $4, l.str
44 ori $4,$4,r.str
48 lw $5,24($29)
4c jal printf
50 add $2, $0, $0
54 lw $31,20($29)
58 addiu $29,$29,32
5c jr $31

•Remove pseudoinstructions, assign addresses

CS 61C L19 Running a Program II (24) Wawrzynek Spring 2006 © UCB

Assembly step 2

°Symbol Table
Label address (in module) type
main: 0x00000000 global text
loop: 0x00000018 local text
str: 0x00000000 local data

°Relocation Information
 Address Instr. type Dependency
0x00000040 lui l.str
0x00000044 ori r.str
0x0000004c jal printf

•Create relocation table and symbol table

CS 61C L19 Running a Program II (25) Wawrzynek Spring 2006 © UCB

Assembly step 3

00 addiu $29,$29,-32
04 sw $31,20($29)
08 sw $4, 32($29)
0c sw $5, 36($29)
10 sw $0, 24($29)
14 sw $0, 28($29)
18 lw $14, 28($29)
1c multu $14, $14
20 mflo $15
24 lw $24, 24($29)
28 addu $25,$24,$15
2c sw $25, 24($29)

30 addiu $8,$14, 1
34 sw $8,28($29)
38 slti $1,$8, 101
3c bne $1,$0, -10
40 lui $4, l.str
44 ori $4,$4,r.str
48 lw $5,24($29)
4c jal printf
50 add $2, $0, $0
54 lw $31,20($29)
58 addiu $29,$29,32
5c jr $31

•Resolve local PC-relative labels

CS 61C L19 Running a Program II (26) Wawrzynek Spring 2006 © UCB

Assembly step 4

°Generate object (.o) file:
• Output binary representation for

- ext segment (instructions),
- data segment (data),
- symbol and relocation tables.

• Using dummy “placeholders” for
unresolved absolute and external
references.

CS 61C L19 Running a Program II (27) Wawrzynek Spring 2006 © UCB

Text segment in object file
0x000000 00100111101111011111111111100000
0x000004 10101111101111110000000000010100
0x000008 10101111101001000000000000100000
0x00000c 10101111101001010000000000100100
0x000010 10101111101000000000000000011000
0x000014 10101111101000000000000000011100
0x000018 10001111101011100000000000011100
0x00001c 10001111101110000000000000011000
0x000020 00000001110011100000000000011001
0x000024 00100101110010000000000000000001
0x000028 00101001000000010000000001100101
0x00002c 10101111101010000000000000011100
0x000030 00000000000000000111100000010010
0x000034 00000011000011111100100000100001
0x000038 00010100001000001111111111110111
0x00003c 10101111101110010000000000011000
0x000040 00111100000001000000000000000000
0x000044 10001111101001010000000000000000
0x000048 00001100000100000000000011101100
0x00004c 00100100000000000000000000000000
0x000050 10001111101111110000000000010100
0x000054 00100111101111010000000000100000
0x000058 00000011111000000000000000001000
0x00005c 00000000000000000001000000100001

CS 61C L19 Running a Program II (28) Wawrzynek Spring 2006 © UCB

Link step 1: combine prog.o, libc.o
° Merge text/data segments
° Create absolute memory addresses
° Modify & merge symbol and relocation tables
° Symbol Table

• Label Address
main: 0x00000000
loop: 0x00000018
str: 0x10000430
printf: 0x000003b0 …

° Relocation Information
• Address Instr. Type Dependency
0x00000040 lui l.str
0x00000044 ori r.str
0x0000004c jal printf …

CS 61C L19 Running a Program II (29) Wawrzynek Spring 2006 © UCB

Link step 2:

00 addiu $29,$29,-32
04 sw $31,20($29)
08 sw $4, 32($29)
0c sw $5, 36($29)
10 sw $0, 24($29)
14 sw $0, 28($29)
18 lw $14, 28($29)
1c multu $14, $14
20 mflo $15
24 lw $24, 24($29)
28 addu $25,$24,$15
2c sw $25, 24($29)

30 addiu $8,$14, 1
34 sw $8,28($29)
38 slti $1,$8, 101
3c bne $1,$0, -10
40 lui $4, 4096
44 ori $4,$4,1072
48 lw $5,24($29)
4c jal 812
50 add $2, $0, $0
54 lw $31,20($29)
58 addiu $29,$29,32
5c jr $31

•Edit Addresses in relocation table (show in
TAL for clarity, but done in binary.)

CS 61C L19 Running a Program II (30) Wawrzynek Spring 2006 © UCB

Link step 3:

° Output executable of merged modules.
• Single text (instruction) segment
• Single data segment
• Header detailing size of each segment

° NOTE:
• The preceeding example was a much simplified

version of how ELF and other standard formats
work, meant only to demonstrate the basic
principles.

CS 61C L19 Running a Program II (31) Wawrzynek Spring 2006 © UCB

Things to Remember (1/3)
C program: foo.c

Assembly program: foo.s

Executable(mach lang pgm): a.out

Compiler

Assembler

Linker

Loader
Memory

Object(mach lang module): foo.o

lib.o

CS 61C L19 Running a Program II (32) Wawrzynek Spring 2006 © UCB

Things to Remember (2/3)
° Compiler converts a single HLL file into a

single assembly language file.
° Assembler removes pseudoinstructions,

converts what it can to machine language,
and creates a checklist for the linker
(relocation table). This changes each .s file
into a .o file.

• Does 2 passes to resolve addresses, handling
internal forward references

° Linker combines several .o files and
resolves absolute addresses.

• Enables separate compilation, libraries that
need not be compiled, and resolves remaining
addresses

° Loader loads executable into memory and
begins execution.

CS 61C L19 Running a Program II (33) Wawrzynek Spring 2006 © UCB

Things to Remember 3/3

°Stored Program concept is very powerful.
It means that instructions sometimes act
just like data. Therefore we can use
programs to manipulate other programs!
Compiler ⇒ Assembler ⇒ Linker (⇒ Loader)

