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Review: Single cycle datapath

°5 steps to design a processor
* 1. Analyze instruction set => datapath requirements

* 2. Select set of datapath components & establish clock
methodology

* 3. Assemble datapath meeting the requirements

* 4. Analyze implementation of each instruction to
determine setting of control points that effects the
register transfer. Processor

* 5. Assemble the control logic |[ ;.70 Input

“Control is the hard part |l | Memory

°MIPS makes that easier || vatpan
* Instructions same size
» Source registers always in same place
* Immediates same size, location
» Operations always on registers/immediates
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Review Datapath (1/3)

°Datapath is the hardware that
performs operations necessary to
execute programs.

°Control instructs datapath on what to
do next.

°Datapath needs:

- access to storage (general purpose
registers and memory)

- computational ability (ALU)
* helper hardware (local registers and PC)
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Review Datapath (2/3)

°Five stages of datapath (executing an
instruction):

1. Instruction Fetch (Increment PC)

2. Instruction Decode (Read Registers)
3. ALU (Computation)

4. Memory Access

5. Write to Registers

°ALL instructions must go through ALL
five stages.
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Review Datapath (3/3)
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Processor Performance

° Can we estimate the clock rate (frequency) of our
single-cycle processor?
* We know:
- 1 cycle per instruction
- LW is the most demanding instruction.

- Assume approximate delays for major pieces of the
datapath:

Instr. Mem, ALU, Data Mem : 2ns each, regfile Ins
Instruction execution requires: 2+ 1 +2 +2 + 1 = 8ns
=> 125 MHz

° What can we do to improve clock rate?

° Will this improve performance as well?

- We would like that any increases in clock rate will result in
programs executing quicker.

CS 61C L29 CPU Pipelining (6) Wawrzynek Spring 2006 © UCB




Gotta Do Laundry
° Ann, Brian, Cathy, Dave

each have one load of OOOD

clothes to wash, dry,
fold, and put away

°Washer takes 30 minutes '
fe—7
° Dryer takes 30 minutes o

°“Folder” takes 30 minutes

°“Stasher” takes 30 minutes
to put clothes into drawers
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Sequential Laundry
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°Sequential laundry takes
8 hours for 4 loads
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Pipelined Laundry
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° °Pi£elined laundry takes
" 3.5 hours for 4 loads!
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General Definitions

°Latency: time to completely execute a
certain task

- for example, time to read a sector from
disk is disk access time or disk latency

°Throughput: amount of work that can
be done over a period of time
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Pipelining Lessons (1/2)

6PM 7 8 9

° Pipelining doesn’t help

latency of single task, it
helps throughput of entire
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r
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Pipelining Lessons (2/2)
°Suppose new
6PM 7 8 9 Washer takes 20
; — Mminutes, new
T — === Stasher takes 20
a 3030 30 30 30 30 30 minutes. How
S — i
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e
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stages reduces
speedup
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Steps in Executing MIPS

1) IFetch: Fetch Instruction, Increment PC
2) Decode Instruction, Read Registers
3) Execute:
Mem-ref: Calculate Address
Arith-log: Perform Operation
4) Memory:
Load: Read Data from Memory
Store: Write Data to Memory

5) Write Back: Write Data to Register
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Pipelined Execution Representation

Time
[IFtch|Dcd [Exec|Mem| WB |
[IFtch{Dcd |Exec|Mem| WB |
[IFtch|Dcd |Exec|[Mem| WB |
[IFtch{Dcd |Exec|Mem| WB |
[IFtch|Dcd |Exec|Mem| WB |
[IFtch{Dcd |Exec|Mem| WB |

v

°Every instruction must take same number
of steps, also called pipeline “stages”, so
some will go idle sometimes
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Review:

Datapath for MIPS
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Graphical Pipeline Representation

(In Reg, right half highlight read, left half write)
Time (clock cycles)
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Example

°Suppose 2 ns for memory access, 2 ns
for ALU operation, and 1 ns for register
file read or write; compute instr rate

°Nonpipelined Execution:

*lw : IF + Read Reg + ALU + Memory + Write
Reg=2+1+2+2+1=8ns

-add: IF + Read Reg + ALU + Write Reg

=2+1+2+1=6 ns (8ns for single-cycle
processor)

°Pipelined Execution:

+ Max(IF,Read Reg,ALU,Memory,Write Reg)
=2ns
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Pipeline Hazard: Matching socks in later load
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A depends on D; stall since folder tied up
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Administrivia

°Adam is the TA in charge of project 4. He
says:
* You should probably have your software-gate
CPU working by today, and if not, that you
robably need to be puttin% more time in on this.
It's not a deadline, just a checkpoint to help you
maintain your own sanity.)

* He will have extra office hours this week to help
people and answer questions:
Wednesday 6:00p-8:00p in Soda 283H
Thursday 6:00p-8:00p in Soda 271
* Read the postings on the newsgroup if you run
into problems. All the technical issues have
gotten resolved very quickly, but there still a lot

of really useful question/answer/advice dialogues
in there from the "early birds".

°Exam 2 reminder: April 19th, 7-9pm.
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Problems for Pipelining CPUs

° Limits to pipelining: Hazards prevent next
instruction from executing during its
designated clock cycle

« Structural hazards: HW cannot support some
combination of instructions (single person to
fold and put clothes away)

+ Control hazards: Pipelining of branches causes
later instruction fetches to wait for the result of
the branch

- Data hazards: Instruction depends on result of
prior instruction still in the pipeline (missing
sock)

°These might result in pipeline stalls or
“bubbles”™ in the pipeline.
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Structural Hazard #1: Single Memory (1/2)

Time (clock cycles)
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Read same memory twice in same clock cycle
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Structural Hazard #1: Single Memory (2/2)

°Solution:

« infeasible and inefficient to create
second memory

* (We’ll learn about this more next week)

* so simulate this by having two Level 1
Caches (a temporary smaller [of usually
most recently used] copy of memory)

* have both an L1 Instruction Cache and
an L1 Data Cache

- need more complex hardware to control
when both caches miss
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Structural Hazard #2: Registers (1/2)

Time (clock cycles)
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Can we read and write to registers simultaneously?
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Structural Hazard #2: Registers (2/2)

°Two different solutions have been
used:

1) RegFile access is VERY fast: takes less
than half the time of ALU stage

- Write to Registers during first half of each
clock cycle

- Read from Registers during second half of
each clock cycle

2) Build RegFile with independent read
and write ports

°Result: can perform Read and Write
during same clock cycle
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Quiz

A. Thanks to pipelining, | have reduced the time it
took me to wash my shirt.

B. Longer pipelines are always a win (since less
work per stage & a faster clock).

C. We can rely on compilers to help us avoid data
hazards by reordering instrs.

ABC
: FFF
: FFT
: FTF
: FTT
: TFF
: TFET
: TTF
: TTT
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Things to Remember

°Optimal Pipeline

- Each stage is executing part of an
instruction each clock cycle.

* One instruction finishes during each clock
cycle.

- On average, execute far more quickly.

°What makes this work?

- Similarities between instructions allow us
to use same stages for all instructions
(generally).

- Each stage takes about the same amount of
time as all others: little wasted time.
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