CS61C — Machine Structures

Lecture 28 - CPU Design: Pipelining to
Improve Performance

4/5/2006
John Wawrzynek
(www.cs.berkeley.edu/~johnw)

www-inst.eecs.berkeley.edu/~cs61c/

CS 61C L29 CPU Pipelining (1) Wawrzynek Spring 2006 © UCB

Review: Single cycle datapath

°5 steps to design a processor
* 1. Analyze instruction set => datapath requirements

* 2. Select set of datapath components & establish clock
methodology

* 3. Assemble datapath meeting the requirements

* 4. Analyze implementation of each instruction to
determine setting of control points that effects the
register transfer. Processor

* 5. Assemble the control logic |[;.70 Input

“Control is the hard part |l | Memory

°MIPS makes that easier || vatpan
* Instructions same size
» Source registers always in same place
* Immediates same size, location
» Operations always on registers/immediates

CS 61C L29 CPU Pipelining (2) Wawrzynek Spring 2006 © UCB

Output

Review Datapath (1/3)

°Datapath is the hardware that
performs operations necessary to
execute programs.

°Control instructs datapath on what to
do next.

°Datapath needs:

- access to storage (general purpose
registers and memory)

- computational ability (ALU)
* helper hardware (local registers and PC)

CS 61C L29 CPU Pipelining (3) Wawrzynek Spring 2006 © UCB

Review Datapath (2/3)

°Five stages of datapath (executing an
instruction):

1. Instruction Fetch (Increment PC)

2. Instruction Decode (Read Registers)
3. ALU (Computation)

4. Memory Access

5. Write to Registers

°ALL instructions must go through ALL
five stages.

CS 61C L29 CPU Pipelining (4) Wawrzynek Spring 2006 © UCB

Review Datapath (3/3)

- N
w
c FCIk o) >
&) - @ -
o += O rs = -
S € - R > ALU RS
Eg [N = © E
= > >
| g E > Qg
. >
— o)
N/

S Decodel 4 Eronuto 4 e
. Decode 3. Execute 4. Memory Bac:rLe

1. Instruction
Fetch Register
Read

CS 61C L29 CPU Pipelining (5) Wawrzynek Spring 2006 © UCB

Processor Performance

° Can we estimate the clock rate (frequency) of our
single-cycle processor?
* We know:
- 1 cycle per instruction
- LW is the most demanding instruction.

- Assume approximate delays for major pieces of the
datapath:

Instr. Mem, ALU, Data Mem : 2ns each, regfile Ins
Instruction execution requires: 2+ 1 +2 +2 + 1 = 8ns
=> 125 MHz

° What can we do to improve clock rate?

° Will this improve performance as well?

- We would like that any increases in clock rate will result in
programs executing quicker.

CS 61C L29 CPU Pipelining (6) Wawrzynek Spring 2006 © UCB

Gotta Do Laundry
° Ann, Brian, Cathy, Dave

each have one load of OOOD

clothes to wash, dry,
fold, and put away

°Washer takes 30 minutes '
fe—7
° Dryer takes 30 minutes o

°“Folder” takes 30 minutes

°“Stasher” takes 30 minutes
to put clothes into drawers

CS 61C L29 CPU Pipelining (7) Wawrzynek Spring 2006 © UCB

Sequential Laundry

GIPM 7 8 9 10 11 12 1 2AM

30'30 30'30'%'%'30'30 %'ﬁ'w'so'ﬁ'ﬁ'so'w'

]
3 = . Time

|o@gh "

k| B A__.

0|8 Agg g
oS =

d

e

r

°Sequential laundry takes
8 hours for 4 loads

CS 61C L29 CPU Pipelining (8) Wawrzynek Spring 2006 © UCB

Pipelined Laundry

GIPM 7 8 9 10 11 12 1 2AM

I »

T 5'30'30‘30’30’30’ Time
A1 O@FA

k| O 5‘__

|G A

110} I

d

° °Pi£elined laundry takes
" 3.5 hours for 4 loads!

CS 61C L29 CPU Pipelining (9) Wawrzynek Spring 2006 © UCB

General Definitions

°Latency: time to completely execute a
certain task

- for example, time to read a sector from
disk is disk access time or disk latency

°Throughput: amount of work that can
be done over a period of time

CS 61C L29 CPU Pipelining (10) Wawrzynek Spring 2006 © UCB

Pipelining Lessons (1/2)

6PM 7 8 9

° Pipelining doesn’t help

latency of single task, it
helps throughput of entire

. I =— workload
anlaniantantanlanlan ° Multiple tasks operatin
i 30 ?’0 30°30 30 30 si_Wﬁ?neously Bsing g
; 3 =] iy A different resources
. — £ ° Potential speedup =
o B = A Number pige stagﬁ
r"B e ° Time to “fill” pipeline and
d 6 ﬁ’ time to “drain” it reduces
speedup:
e 2.3X v. 4X in this example
r
CS 61C L29 CPU Pipelining (11) Wawrzynek Spring 2006 © UCB
Pipelining Lessons (2/2)
°Suppose new
6PM 7 8 9 Washer takes 20
; — Mminutes, new
T — === Stasher takes 20
a 3030 30 30 30 30 30 minutes. How
S — i
; SaAs A much fagter is
= pipeline”
& 824 °Pipeline rat
Of —~ ~ Ipeline rate
r"§ E“.— A limited by slowest
d O pipeline stage
e
r °Unbalanced
lengths of pipe

€S 61C L29 CPU Pipelining (12)

stages reduces
speedup

Wawrzynek Spring 2006 © UCB

Steps in Executing MIPS

1) IFetch: Fetch Instruction, Increment PC
2) Decode Instruction, Read Registers
3) Execute:
Mem-ref: Calculate Address
Arith-log: Perform Operation
4) Memory:
Load: Read Data from Memory
Store: Write Data to Memory

5) Write Back: Write Data to Register

CS 61C L29 CPU Pipelining (13) Wawrzynek Spring 2006 © UCB

Pipelined Execution Representation

Time
[IFtch|Dcd [Exec|Mem| WB |
[IFtch{Dcd |Exec|Mem| WB |
[IFtch|Dcd |Exec|[Mem| WB |
[IFtch{Dcd |Exec|Mem| WB |
[IFtch|Dcd |Exec|Mem| WB |
[IFtch{Dcd |Exec|Mem| WB |

v

°Every instruction must take same number
of steps, also called pipeline “stages”, so
some will go idle sometimes

CS 61C L29 CPU Pipelining (14) Wawrzynek Spring 2006 © UCB

Review:

Datapath for MIPS

instruction

memory

<&

1. Instruction

Fetch

°Use datapath figure to re
[IFtch|Dcd

!

€S 61C L29 CPU Pipelining (15)

N
%)
rd R E >
»
rs o) P
> © O
i o > ALU g e
> > 0o
| £
imm | "
> ¢————por—>

v2. Decode/

Register Read

pres

3. Execute 4. Memory

r—>
5. Write
Back

ent pipeline

Exec

Mem

WB |

¢

:1

¢

I

D$ | Reg

¢

Wawrzynek Spring 2006 © UCB

Graphical Pipeline Representation

(In Reg, right half highlight read, left half write)
Time (clock cycles)

CS 61C L29 CPU Pipelining (16)

I

n 15 [I[Rés]: 5, D$ | fReg

s Load Z

t |Add Bl g | E P8 iR

r I :

' 15 |fRré R
Store 2

0

. Sub D$ [-{Bee

d =Y i p$: Reg
Or (=

e

ry

Wawrzynek Spring 2006 © UCB

Example

°Suppose 2 ns for memory access, 2 ns
for ALU operation, and 1 ns for register
file read or write; compute instr rate

°Nonpipelined Execution:

*lw : IF + Read Reg + ALU + Memory + Write
Reg=2+1+2+2+1=8ns

-add: IF + Read Reg + ALU + Write Reg

=2+1+2+1=6 ns (8ns for single-cycle
processor)

°Pipelined Execution:

+ Max(IF,Read Reg,ALU,Memory,Write Reg)
=2ns

CS 61C L29 CPU Pipelining (17) Wawrzynek Spring 2006 © UCB

Pipeline Hazard: Matching socks in later load

6|PM 7 8 9 10 11 12 1 2AM
=== | | Time

»

T 3030 3030303030
Ha

K& B YR

|8 _ %A
°|& g X

I\ B §5 A
G A

A depends on D; stall since folder tied up

CS 61C L29 CPU Pipelining (18) Wawrzynek Spring 2006 © UCB

Administrivia

°Adam is the TA in charge of project 4. He
says:
* You should probably have your software-gate
CPU working by today, and if not, that you
robably need to be puttin% more time in on this.
It's not a deadline, just a checkpoint to help you
maintain your own sanity.)

* He will have extra office hours this week to help
people and answer questions:
Wednesday 6:00p-8:00p in Soda 283H
Thursday 6:00p-8:00p in Soda 271
* Read the postings on the newsgroup if you run
into problems. All the technical issues have
gotten resolved very quickly, but there still a lot

of really useful question/answer/advice dialogues
in there from the "early birds".

°Exam 2 reminder: April 19th, 7-9pm.

CS 61C L29 CPU Pipelining (19) Wawrzynek Spring 2006 © UCB

Problems for Pipelining CPUs

° Limits to pipelining: Hazards prevent next
instruction from executing during its
designated clock cycle

« Structural hazards: HW cannot support some
combination of instructions (single person to
fold and put clothes away)

+ Control hazards: Pipelining of branches causes
later instruction fetches to wait for the result of
the branch

- Data hazards: Instruction depends on result of
prior instruction still in the pipeline (missing
sock)

°These might result in pipeline stalls or
“bubbles”™ in the pipeline.

CS 61C L29 CPU Pipelining (20) Wawrzynek Spring 2006 © UCB

Structural Hazard #1: Single Memory (1/2)

Time (clock cycles)

1$ | Reg|: D$ Reg
Load * -

1$ [IReg| & D$ Ii_ Reg

[
»

Instr 1 o2

I$ HIR D$ [IR
Instr 2 - |i *

T S -

0 |nStr3 I$ H}Reg : D$ | {Reg
r — ‘
(>
d YIinstr 4 I$ _fReg- - { D$ LiiReg
e
r

Read same memory twice in same clock cycle

CS 61C L29 CPU Pipelining (21) Wawrzynek Spring 2006 © UCB

Structural Hazard #1: Single Memory (2/2)

°Solution:

« infeasible and inefficient to create
second memory

* (We’ll learn about this more next week)

* so simulate this by having two Level 1
Caches (a temporary smaller [of usually
most recently used] copy of memory)

* have both an L1 Instruction Cache and
an L1 Data Cache

- need more complex hardware to control
when both caches miss

CS 61C L29 CPU Pipelining (22) Wawrzynek Spring 2006 © UCB

Structural Hazard #2: Registers (1/2)

Time (clock cycles)

|

S I$ LI Reg - p$ [: Reg
SW E ‘

t ;

r- {Instr 1 1$] Reg _ D$ Reg

v

15 H{Reg)< D8 iR
O |Instr 2 Bl e |; 8
r Tk
Instr 3 I$ Q[Reg _ D$ | {Reg
e YIinstr 4 1$ H] Reg: Z { D$ LiiReg
r

Can we read and write to registers simultaneously?

CS 61C L29 CPU Pipelining (23) Wawrzynek Spring 2006 © UCB

Structural Hazard #2: Registers (2/2)

°Two different solutions have been
used:

1) RegFile access is VERY fast: takes less
than half the time of ALU stage

- Write to Registers during first half of each
clock cycle

- Read from Registers during second half of
each clock cycle

2) Build RegFile with independent read
and write ports

°Result: can perform Read and Write
during same clock cycle

CS 61C L29 CPU Pipelining (24) Wawrzynek Spring 2006 © UCB

Quiz

A. Thanks to pipelining, | have reduced the time it
took me to wash my shirt.

B. Longer pipelines are always a win (since less
work per stage & a faster clock).

C. We can rely on compilers to help us avoid data
hazards by reordering instrs.

ABC
: FFF
: FFT
: FTF
: FTT
: TFF
: TFET
: TTF
: TTT

CS 61C L29 CPU Pipelining (25) Wawrzynek Spring 2006 © UCB

codJoyUidWN R

Things to Remember

°Optimal Pipeline

- Each stage is executing part of an
instruction each clock cycle.

* One instruction finishes during each clock
cycle.

- On average, execute far more quickly.

°What makes this work?

- Similarities between instructions allow us
to use same stages for all instructions
(generally).

- Each stage takes about the same amount of
time as all others: little wasted time.

CS 61C L29 CPU Pipelining (26) Wawrzynek Spring 2006 © UCB

