
CS 61C L29 CPU Pipelining (1) Wawrzynek Spring 2006 © UCB

4/5/2006
John Wawrzynek

(www.cs.berkeley.edu/~johnw)

www-inst.eecs.berkeley.edu/~cs61c/

CS61C – Machine Structures

Lecture 28 - CPU Design: Pipelining to
Improve Performance

CS 61C L29 CPU Pipelining (2) Wawrzynek Spring 2006 © UCB

°5 steps to design a processor
• 1. Analyze instruction set => datapath requirements
• 2. Select set of datapath components & establish clock

methodology
• 3. Assemble datapath meeting the requirements
• 4. Analyze implementation of each instruction to

determine setting of control points that effects the
register transfer.
• 5. Assemble the control logic

°Control is the hard part
°MIPS makes that easier
• Instructions same size
• Source registers always in same place
• Immediates same size, location
• Operations always on registers/immediates

Review: Single cycle datapath

Control

Datapath

Memory

Processor
Input

Output

CS 61C L29 CPU Pipelining (3) Wawrzynek Spring 2006 © UCB

Review Datapath (1/3)

°Datapath is the hardware that
performs operations necessary to
execute programs.

°Control instructs datapath on what to
do next.

°Datapath needs:
• access to storage (general purpose
registers and memory)

• computational ability (ALU)
• helper hardware (local registers and PC)

CS 61C L29 CPU Pipelining (4) Wawrzynek Spring 2006 © UCB

Review Datapath (2/3)

°Five stages of datapath (executing an
instruction):

1. Instruction Fetch (Increment PC)
2. Instruction Decode (Read Registers)
3. ALU (Computation)
4. Memory Access
5. Write to Registers

°ALL instructions must go through ALL
five stages.

CS 61C L29 CPU Pipelining (5) Wawrzynek Spring 2006 © UCB

Review Datapath (3/3)

PC

in
st

ru
ct

io
n

m
em

or
y

+4

rt
rs
rd

re
gi

st
er

s

ALU

Da
ta

m
em

or
y

imm

1. Instruction
Fetch

2. Decode/
 Register

Read
3. Execute 4. Memory5. Write

Back

CS 61C L29 CPU Pipelining (6) Wawrzynek Spring 2006 © UCB

Processor Performance
° Can we estimate the clock rate (frequency) of our

single-cycle processor?
• We know:

- 1 cycle per instruction
- LW is the most demanding instruction.
- Assume approximate delays for major pieces of the

datapath:
Instr. Mem, ALU, Data Mem : 2ns each, regfile 1ns
Instruction execution requires: 2 + 1 + 2 + 2 + 1 = 8ns
=> 125 MHz

° What can we do to improve clock rate?
° Will this improve performance as well?

- We would like that any increases in clock rate will result in
programs executing quicker.

CS 61C L29 CPU Pipelining (7) Wawrzynek Spring 2006 © UCB

Gotta Do Laundry
° Ann, Brian, Cathy, Dave

each have one load of
clothes to wash, dry,
fold, and put away

A B C D

° Dryer takes 30 minutes

° “Folder” takes 30 minutes

° “Stasher” takes 30 minutes
to put clothes into drawers

° Washer takes 30 minutes

CS 61C L29 CPU Pipelining (8) Wawrzynek Spring 2006 © UCB

Sequential Laundry

°Sequential laundry takes
8 hours for 4 loads

T
a
s
k

O
r
d
e
r

B

C
D

A
30
Time

3030 3030 30 3030 30 30 3030 3030 3030

6 PM 7 8 9 10 11 12 1 2 AM

CS 61C L29 CPU Pipelining (9) Wawrzynek Spring 2006 © UCB

Pipelined Laundry

°Pipelined laundry takes
3.5 hours for 4 loads!

T
a
s
k

O
r
d
e
r

B
C
D

A

12 2 AM6 PM 7 8 9 10 11 1

Time303030 3030 30 30

CS 61C L29 CPU Pipelining (10) Wawrzynek Spring 2006 © UCB

General Definitions

°Latency: time to completely execute a
certain task

• for example, time to read a sector from
disk is disk access time or disk latency

°Throughput: amount of work that can
be done over a period of time

CS 61C L29 CPU Pipelining (11) Wawrzynek Spring 2006 © UCB

Pipelining Lessons (1/2)
° Pipelining doesn’t help

latency of single task, it
helps throughput of entire
workload

° Multiple tasks operating
simultaneously using
different resources

° Potential speedup =
Number pipe stages

° Time to “fill” pipeline and
time to “drain” it reduces
speedup:
2.3X v. 4X in this example

6 PM 7 8 9
Time

B
C
D

A
3030 30 3030 30 30

T
a
s
k

O
r
d
e
r

CS 61C L29 CPU Pipelining (12) Wawrzynek Spring 2006 © UCB

Pipelining Lessons (2/2)
°Suppose new
Washer takes 20
minutes, new
Stasher takes 20
minutes. How
much faster is
pipeline?

°Pipeline rate
limited by slowest
pipeline stage

°Unbalanced
lengths of pipe
stages reduces
speedup

6 PM 7 8 9
Time

B
C
D

A
3030 30 3030 30 30

T
a
s
k

O
r
d
e
r

CS 61C L29 CPU Pipelining (13) Wawrzynek Spring 2006 © UCB

Steps in Executing MIPS

1) IFetch: Fetch Instruction, Increment PC
2) Decode Instruction, Read Registers
3) Execute:
 Mem-ref: Calculate Address
 Arith-log: Perform Operation

4) Memory:
 Load: Read Data from Memory
 Store: Write Data to Memory

5) Write Back: Write Data to Register

CS 61C L29 CPU Pipelining (14) Wawrzynek Spring 2006 © UCB

Pipelined Execution Representation

°Every instruction must take same number
of steps, also called pipeline “stages”, so
some will go idle sometimes

IFtch Dcd Exec Mem WB
IFtch Dcd Exec Mem WB

IFtch Dcd Exec Mem WB
IFtch Dcd Exec Mem WB

IFtch Dcd Exec Mem WB
IFtch Dcd Exec Mem WB

Time

CS 61C L29 CPU Pipelining (15) Wawrzynek Spring 2006 © UCB

Review: Datapath for MIPS

°Use datapath figure to represent pipeline
IFtch Dcd Exec Mem WB

A
LU I$ Reg D$ Reg

PC

in
st

ru
ct

io
n

m
em

or
y

+4

rt
rs
rd

re
gi

st
er

s

ALU

Da
ta

m
em

or
y

imm

1. Instruction
Fetch

2. Decode/
 Register Read

3. Execute 4. Memory5. Write
Back

CS 61C L29 CPU Pipelining (16) Wawrzynek Spring 2006 © UCB

Graphical Pipeline Representation

I
n
s
t
r.

O
r
d
e
r

Load

Add

Store

Sub

Or

 I$

Time (clock cycles)

 I$

A
LU

Reg

Reg

 I$

 D$

A
LU

A
LU

Reg

 D$

Reg

 I$

 D$

Reg

A
LU

Reg Reg

Reg

 D$

Reg

 D$

A
LU

(In Reg, right half highlight read, left half write)

Reg

 I$

CS 61C L29 CPU Pipelining (17) Wawrzynek Spring 2006 © UCB

Example
°Suppose 2 ns for memory access, 2 ns
for ALU operation, and 1 ns for register
file read or write; compute instr rate

°Nonpipelined Execution:
• lw : IF + Read Reg + ALU + Memory + Write
Reg = 2 + 1 + 2 + 2 + 1 = 8 ns

• add: IF + Read Reg + ALU + Write Reg
= 2 + 1 + 2 + 1 = 6 ns (8ns for single-cycle
processor)

°Pipelined Execution:
• Max(IF,Read Reg,ALU,Memory,Write Reg)
= 2 ns

CS 61C L29 CPU Pipelining (18) Wawrzynek Spring 2006 © UCB

Pipeline Hazard: Matching socks in later load

A depends on D; stall since folder tied up

T
a
s
k

O
r
d
e
r

B
C
D

A

E

F

bubble

12 2 AM6 PM 7 8 9 10 11 1

Time303030 3030 30 30

CS 61C L29 CPU Pipelining (19) Wawrzynek Spring 2006 © UCB

Administrivia
° Adam is the TA in charge of project 4. He

says:
• You should probably have your software-gate

CPU working by today, and if not, that you
probably need to be putting more time in on this.
(It's not a deadline, just a checkpoint to help you
maintain your own sanity.)

• He will have extra office hours this week to help
people and answer questions:

- Wednesday 6:00p-8:00p in Soda 283H
- Thursday 6:00p-8:00p in Soda 271

• Read the postings on the newsgroup if you run
into problems. All the technical issues have
gotten resolved very quickly, but there still a lot
of really useful question/answer/advice dialogues
in there from the "early birds".

° Exam 2 reminder: April 19th, 7-9pm.

CS 61C L29 CPU Pipelining (20) Wawrzynek Spring 2006 © UCB

Problems for Pipelining CPUs

° Limits to pipelining: Hazards prevent next
instruction from executing during its
designated clock cycle

• Structural hazards: HW cannot support some
combination of instructions (single person to
fold and put clothes away)

• Control hazards: Pipelining of branches causes
later instruction fetches to wait for the result of
the branch

• Data hazards: Instruction depends on result of
prior instruction still in the pipeline (missing
sock)

° These might result in pipeline stalls or
“bubbles” in the pipeline.

CS 61C L29 CPU Pipelining (21) Wawrzynek Spring 2006 © UCB

Structural Hazard #1: Single Memory (1/2)

Read same memory twice in same clock cycle

 I$

Load

Instr 1

Instr 2

Instr 3

Instr 4

A
LU I$ Reg D$ Reg

A
LU I$ Reg D$ Reg

A
LU I$ Reg D$ Reg

A
LUReg D$ Reg

A
LU I$ Reg D$ Reg

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

CS 61C L29 CPU Pipelining (22) Wawrzynek Spring 2006 © UCB

Structural Hazard #1: Single Memory (2/2)

°Solution:
• infeasible and inefficient to create
second memory

• (We’ll learn about this more next week)
• so simulate this by having two Level 1
Caches (a temporary smaller [of usually
most recently used] copy of memory)

• have both an L1 Instruction Cache and
an L1 Data Cache

• need more complex hardware to control
when both caches miss

CS 61C L29 CPU Pipelining (23) Wawrzynek Spring 2006 © UCB

Structural Hazard #2: Registers (1/2)

Can we read and write to registers simultaneously?

 I$

sw

Instr 1

Instr 2

Instr 3

Instr 4

A
LU I$ Reg D$ Reg

A
LU I$ Reg D$ Reg

A
LU I$ Reg D$ Reg

A
LUReg D$ Reg

A
LU I$ Reg D$ Reg

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

CS 61C L29 CPU Pipelining (24) Wawrzynek Spring 2006 © UCB

Structural Hazard #2: Registers (2/2)

°Two different solutions have been
used:

1) RegFile access is VERY fast: takes less
than half the time of ALU stage

- Write to Registers during first half of each
clock cycle

- Read from Registers during second half of
each clock cycle

2) Build RegFile with independent read
and write ports

°Result: can perform Read and Write
during same clock cycle

CS 61C L29 CPU Pipelining (25) Wawrzynek Spring 2006 © UCB

Quiz

A. Thanks to pipelining, I have reduced the time it
took me to wash my shirt.

B. Longer pipelines are always a win (since less
work per stage & a faster clock).

C. We can rely on compilers to help us avoid data
hazards by reordering instrs.

 ABC
1: FFF
2: FFT
3: FTF
4: FTT
5: TFF
6: TFT
7: TTF
8: TTT

CS 61C L29 CPU Pipelining (26) Wawrzynek Spring 2006 © UCB

Things to Remember
°Optimal Pipeline

• Each stage is executing part of an
instruction each clock cycle.

• One instruction finishes during each clock
cycle.

• On average, execute far more quickly.

°What makes this work?
• Similarities between instructions allow us
to use same stages for all instructions
(generally).

• Each stage takes about the same amount of
time as all others: little wasted time.

