
CS 61C L33 Caches III (1) Wawrzynek Spring 2006 © UCB

4/14/2006
John Wawrzynek

(www.cs.berkeley.edu/~johnw)

www-inst.eecs.berkeley.edu/~cs61c/

CS61C – Machine Structures

Lecture 33 - Caches III

CS 61C L33 Caches III (2) Wawrzynek Spring 2006 © UCB

Review: Why We Use Caches
µProc
60%/yr.

DRAM
7%/yr.

1

10

100

1000

19
80

19
81

19
83

19
84

19
85

19
86

19
87

19
88 19

89

19
90

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

DRAM

CPU

19
82

Processor-Memory
Performance Gap:
(grows 50% / year)

Pe
rfo

rm
an

ce “Moore’s Law”

° 1989 first Intel CPU with cache on chip
° 1998 Pentium III has two levels of cache on chip

CS 61C L33 Caches III (3) Wawrzynek Spring 2006 © UCB

Fully Associative Cache (2/3)
°Fully Associative Cache (e.g., 32 B block)

• compare tags in parallel

Byte Offset

:

 Cache Data
B 0

0431

:

Cache Tag (27 bits long)

Valid

:

B 1B 31 :

 Cache Tag
=

=
=

=

=
:

CS 61C L33 Caches III (4) Wawrzynek Spring 2006 © UCB

Fully Associative Cache (3/3)

°Benefit of Fully Assoc Cache
• No Conflict Misses (since data can go
anywhere)

°Drawbacks of Fully Assoc Cache
• Need hardware comparator for every
single entry: if we have a 64KB of data in
cache with 4B entries, we need 16K
comparators: very expensive!

- Alternatively, use fewer comparisons, but
compare sequentially - too slow!

CS 61C L33 Caches III (5) Wawrzynek Spring 2006 © UCB

Third Type of Cache Miss

°Capacity Misses
• miss that occurs because the cache has
a limited size

• miss that would not occur if we increase
the size of the cache

• sketchy definition, so just get the general
idea

°This is the primary type of miss for
Fully Associative caches.

CS 61C L33 Caches III (6) Wawrzynek Spring 2006 © UCB

N-Way Set Associative Cache (1/4)

°Memory address fields:
• Tag: same as before
• Offset: same as before
• Index: points us to the correct “row”
(called a set in this case)

°So what’s the difference?
• each set contains multiple blocks
• once we’ve found correct set, must
compare with all tags in that set to find
our data

CS 61C L33 Caches III (7) Wawrzynek Spring 2006 © UCB

Set Associative Cache Example

Here’s a simple 2 way set
associative cache.

Memory
Memory
Address

0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

Cache
Index

0
0
1
1

CS 61C L33 Caches III (8) Wawrzynek Spring 2006 © UCB

N-Way Set Associative Cache (2/4)

°Summary:
• cache is direct-mapped w/respect to sets
• each set is fully associative
• basically N direct-mapped caches
working in parallel: each has its own
valid bit and data

CS 61C L33 Caches III (9) Wawrzynek Spring 2006 © UCB

N-Way Set Associative Cache (3/4)

°Given memory address:
• Find correct set using Index value.
• Compare Tag with all Tag values in the
determined set.

• If a match occurs, hit!, otherwise a miss.
• Finally, use the offset field as usual to
find the desired data within the block.

CS 61C L33 Caches III (10) Wawrzynek Spring 2006 © UCB

N-Way Set Associative Cache (4/4)

°What’s so great about this?
• even a 2-way set assoc cache avoids a
lot of conflict misses

• hardware cost isn’t that bad: only need N
comparators

° In fact, for a cache with M blocks,
• it’s Direct-Mapped if it’s 1-way set assoc
• it’s Fully Assoc if it’s M-way set assoc
• so these two are just special cases of the
more general set associative design

CS 61C L33 Caches III (11) Wawrzynek Spring 2006 © UCB

4-Way Set Associative Cache Circuit

tag
index

CS 61C L33 Caches III (12) Wawrzynek Spring 2006 © UCB

Block Replacement Policy (2/2)

° If there are any locations with valid bit
off (empty), then usually write the new
block into the first one.

° If all possible locations already have a
valid block, we must pick a
replacement policy: rule by which we
determine which block gets “cached
out” on a miss.

CS 61C L33 Caches III (13) Wawrzynek Spring 2006 © UCB

Block Replacement Policy: LRU

°LRU (Least Recently Used)
• Idea: cache out block which has been
accessed (read or write) least recently

• Pro: temporal locality ⇒ recent past use
implies likely future use: in fact, this is a
very effective policy

• Con: with 2-way set assoc, easy to keep
track (one LRU bit); with 4-way or
greater, requires complicated hardware
and much time to keep track of this

CS 61C L33 Caches III (14) Wawrzynek Spring 2006 © UCB

Block Replacement Example
°We have a 2-way set associative cache
with a four word total capacity and one
word blocks. We perform the
following word accesses (ignore bytes
for this problem):

0, 2, 0, 1, 4, 0, 2, 3, 5, 4
How many hits and how many misses
will there be for the LRU block
replacement policy?

CS 61C L33 Caches III (15) Wawrzynek Spring 2006 © UCB

Block Replacement Example: LRU
°Addresses 0, 2, 0, 1, 4, 0, ... 0 lru

2

1 lru

loc 0 loc 1
set 0
set 1

0 2lruset 0
set 1

 0: miss, bring into set 0 (loc 0)

 2: miss, bring into set 0 (loc 1)

 0: hit

 1: miss, bring into set 1 (loc 0)

 4: miss, bring into set 0 (loc 1, replace 2)

 0: hit

0set 0
set 1

lrulru

0 2set 0
set 1

lru lru

set 0
set 1

0
1 lru

lru24lru

set 0
set 1

0 4
1 lru

lru lru

CS 61C L33 Caches III (16) Wawrzynek Spring 2006 © UCB

Big Idea
°How to choose between associativity,
block size, replacement policy?

°Design against a performance model
• Minimize: Average Memory Access Time
 = Hit Time
 + Miss Penalty x Miss Rate

• influenced by technology & program
behavior

°Create the illusion of a memory that is
large, cheap, and fast - on average

CS 61C L33 Caches III (17) Wawrzynek Spring 2006 © UCB

Example

°Assume
• Hit Time = 1 cycle
• Miss rate = 5%
• Miss penalty = 20 cycles
• Calculate AMAT…

°Avg mem access time
= 1 + 0.05 x 20
= 1 + 1 cycles
= 2 cycles

CS 61C L33 Caches III (18) Wawrzynek Spring 2006 © UCB

Administrivia

°Do your reading! VM is coming up,
and it’s shown to be hard for students!

°Project 5 out
°Exam

• Wed 4/19, 1 Pimentel 7-9pm
• Covers weeks 6-12 (focus on lecture
material)

• TA Review Monday evening

CS 61C L33 Caches III (19) Wawrzynek Spring 2006 © UCB

Ways to reduce miss rate

°Larger cache
• limited by cost and technology
• hit time of first level cache < cycle time

°More places in the cache to put each
block of memory – associativity

• fully-associative
- any block any line

• N-way set associated
- N places for each block
- direct map: N=1

CS 61C L33 Caches III (20) Wawrzynek Spring 2006 © UCB

Improving Miss Penalty
°When caches first became popular, Miss
Penalty ~ 10 processor clock cycles

°Today 2400 MHz Processor (0.4 ns per
clock cycle) and 80 ns to go to DRAM
⇒ 200 processor clock cycles!

Proc $2

DRAM$

MEM

Solution: another cache between memory and
the processor cache: Second Level (L2) Cache

CS 61C L33 Caches III (21) Wawrzynek Spring 2006 © UCB

Analyzing Multi-level cache hierarchy

Proc $2

DRAM$

L1 hit
time

L1 Miss Rate
L1 Miss Penalty

Avg Mem Access Time =
L1 Hit Time + L1 Miss Rate * L1 Miss Penalty

L1 Miss Penalty =
L2 Hit Time + L2 Miss Rate * L2 Miss Penalty

Avg Mem Access Time =
L1 Hit Time + L1 Miss Rate *
(L2 Hit Time + L2 Miss Rate * L2 Miss Penalty)

L2 hit
time L2 Miss Rate

L2 Miss Penalty

CS 61C L33 Caches III (22) Wawrzynek Spring 2006 © UCB

Typical Scale

°L1
• size: tens of KB
• hit time: complete in one clock cycle
• miss rates: 1-5%

°L2:
• size: hundreds of KB
• hit time: few clock cycles
• miss rates: 10-20%

°L2 miss rate is fraction of L1 misses
that also miss in L2

• why so high?

CS 61C L33 Caches III (23) Wawrzynek Spring 2006 © UCB

Example: with L2 cache

°Assume
• L1 Hit Time = 1 cycle
• L1 Miss rate = 5%
• L2 Hit Time = 5 cycles
• L2 Miss rate = 15% (% L1 misses that miss)
• L2 Miss Penalty = 200 cycles

°L1 miss penalty = 5 + 0.15 * 200 = 35
°Avg mem access time = 1 + 0.05 x 35

= 2.75 cycles

CS 61C L33 Caches III (24) Wawrzynek Spring 2006 © UCB

Example: without L2 cache

°Assume
• L1 Hit Time = 1 cycle
• L1 Miss rate = 5%
• L1 Miss Penalty = 200 cycles

°Avg mem access time = 1 + 0.05 x 200
= 11 cycles

°4x faster with L2 cache! (2.75 vs. 11)

CS 61C L33 Caches III (25) Wawrzynek Spring 2006 © UCB

What to do on a write hit?

°Write-through
• update the word in cache block and
corresponding word in memory

°Write-back
• update word in cache block
• allow memory word to be “stale”
⇒ add ‘dirty’ bit to each block indicating
that memory needs to be updated when
block is replaced
⇒ OS flushes cache before I/O…

°Performance trade-offs?

CS 61C L33 Caches III (26) Wawrzynek Spring 2006 © UCB

Generalized Caching

°We’ve discussed memory caching in
detail. Caching in general shows up
over and over in computer systems

• Filesystem cache
• Web page cache
• Game Theory databases / tablebases
• Software memoization
• Others?

°Big idea: if something is expensive
but we want to do it repeatedly, do it
once and cache the result.

CS 61C L33 Caches III (27) Wawrzynek Spring 2006 © UCB

An actual CPU -- Early PowerPC
° Cache

• 32 KByte Instructions
and 32 KByte Data L1
caches

• External L2 Cache
interface with integrated
controller and cache
tags, supports up to 1
MByte external L2 cache

• Dual Memory
Management Units
(MMU) with Translation
Lookaside Buffers (TLB)

° Pipelining
• Superscalar (3

inst/cycle)
• 6 execution units (2

integer and 1 double
precision IEEE floating
point)

CS 61C L33 Caches III (29) Wawrzynek Spring 2006 © UCB

And in Conclusion…
°Cache design choices:

• size of cache: speed v. capacity
• direct-mapped v. associative
• for N-way set assoc: choice of N
• block replacement policy
• 2nd level cache?
• 3rd level cache?
• Write through v. write back?

°Use performance model to pick
between choices, depending on
programs, technology, budget, ...

