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Review: Why We Use Caches
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° 1989 first Intel CPU with cache on chip
° 1998 Pentium III has two levels of cache on chip
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Fully Associative Cache (2/3)
°Fully Associative Cache (e.g., 32 B block)

• compare tags in parallel

Byte Offset

:

 Cache Data
B 0

0431

:

Cache Tag (27 bits long)

Valid

:

B 1B 31 :

 Cache Tag
=

=
=

=

=
:
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Fully Associative Cache (3/3)

°Benefit of Fully Assoc Cache
• No Conflict Misses (since data can go
anywhere)

°Drawbacks of Fully Assoc Cache
• Need hardware comparator for every
single entry: if we have a 64KB of data in
cache with 4B entries, we need 16K
comparators: very expensive!

- Alternatively, use fewer comparisons, but
compare sequentially - too slow!



CS 61C L33 Caches III  (5) Wawrzynek Spring 2006 © UCB

Third Type of Cache Miss

°Capacity Misses
• miss that occurs because the cache has
a limited size

• miss that would not occur if we increase
the size of the cache

• sketchy definition, so just get the general
idea

°This is the primary type of miss for
Fully Associative caches.
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N-Way Set Associative Cache (1/4)

°Memory address fields:
• Tag: same as before
• Offset: same as before
• Index: points us to the correct “row”
(called a set in this case)

°So what’s the difference?
• each set contains multiple blocks
• once we’ve found correct set, must
compare with all tags in that set to find
our data
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Set Associative Cache Example

Here’s a simple 2 way set
associative cache.

Memory
Memory 
Address

0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

Cache 
Index

0
0
1
1
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N-Way Set Associative Cache (2/4)

°Summary:
• cache is direct-mapped w/respect to sets
• each set is fully associative
• basically N direct-mapped caches
working in parallel: each has its own
valid bit and data
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N-Way Set Associative Cache (3/4)

°Given memory address:
• Find correct set using Index value.
• Compare Tag with all Tag values in the
determined set.

• If a match occurs, hit!, otherwise a miss.
• Finally, use the offset field as usual to
find the desired data within the block.
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N-Way Set Associative Cache (4/4)

°What’s so great about this?
• even a 2-way set assoc cache avoids a
lot of conflict misses

• hardware cost isn’t that bad: only need N
comparators

° In fact, for a cache with M blocks,
• it’s Direct-Mapped if it’s 1-way set assoc
• it’s Fully Assoc if it’s M-way set assoc
• so these two are just special cases of the
more general set associative design
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4-Way Set Associative Cache Circuit

tag
index
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Block Replacement Policy (2/2)

° If there are any locations with valid bit
off (empty), then usually write the new
block into the first one.

° If all possible locations already have a
valid block, we must pick a
replacement policy: rule by which we
determine which block gets “cached
out” on a miss.
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Block Replacement Policy: LRU

°LRU (Least Recently Used)
• Idea: cache out block which has been
accessed (read or write) least recently

• Pro: temporal locality ⇒ recent past use
implies likely future use: in fact, this is a
very effective policy

• Con: with 2-way set assoc, easy to keep
track (one LRU bit); with 4-way or
greater, requires complicated hardware
and much time to keep track of this
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Block Replacement Example
°We have a 2-way set associative cache
with a four word total capacity and one
word blocks.  We perform the
following word accesses (ignore bytes
for this problem):

0, 2, 0, 1, 4, 0, 2, 3, 5, 4
How many hits and how many misses
will there be for the LRU block
replacement policy?
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Block Replacement Example: LRU
°Addresses 0, 2, 0, 1, 4, 0, ... 0 lru

2

1 lru

loc 0 loc 1
set 0
set 1

0 2lruset 0
set 1

 0: miss, bring into set 0 (loc 0)

 2: miss, bring into set 0 (loc 1)

 0: hit

 1: miss, bring into set 1 (loc 0)

 4: miss, bring into set 0 (loc 1, replace 2)

 0: hit

0set 0
set 1

lrulru

0 2set 0
set 1

lru lru

set 0
set 1

0
1 lru

lru24lru

set 0
set 1

0 4
1 lru

lru lru
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Big Idea
°How to choose between associativity,
block size, replacement policy?

°Design against a performance model
• Minimize: Average Memory Access Time
     = Hit Time
      +  Miss Penalty x Miss Rate

• influenced by technology & program
behavior

°Create the illusion of a memory that is
large, cheap, and fast - on average
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Example

°Assume
• Hit Time = 1 cycle
• Miss rate = 5%
• Miss penalty = 20 cycles
• Calculate AMAT…

°Avg mem access time
= 1 + 0.05 x 20
= 1 + 1 cycles
= 2 cycles

CS 61C L33 Caches III  (18) Wawrzynek Spring 2006 © UCB

Administrivia

°Do your reading!  VM is coming up,
and it’s shown to be hard for students!

°Project 5 out
°Exam

• Wed 4/19, 1 Pimentel 7-9pm
• Covers weeks 6-12 (focus on lecture
material)

• TA Review Monday evening
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Ways to reduce miss rate

°Larger cache
• limited by cost and technology
• hit time of first level cache < cycle time

°More places in the cache to put each
block of memory – associativity

• fully-associative
- any block any line

• N-way set associated
- N places for each block
- direct map: N=1
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Improving Miss Penalty
°When caches first became popular, Miss
Penalty ~ 10 processor clock cycles

°Today 2400 MHz Processor (0.4 ns per
clock cycle) and 80 ns to go to DRAM
⇒ 200 processor clock cycles!

Proc $2

DRAM$

MEM

Solution: another cache between memory and
the processor cache: Second Level (L2) Cache
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Analyzing Multi-level cache hierarchy

Proc $2

DRAM$

L1 hit 
time

L1 Miss Rate
L1 Miss Penalty

Avg Mem Access Time = 
L1 Hit Time + L1 Miss Rate * L1 Miss Penalty

L1 Miss Penalty = 
L2 Hit Time + L2 Miss Rate * L2 Miss Penalty

Avg Mem Access Time = 
L1 Hit Time + L1 Miss Rate * 
(L2 Hit Time +  L2 Miss Rate * L2 Miss Penalty)

L2 hit 
time L2 Miss Rate

L2 Miss Penalty
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Typical Scale

°L1
• size: tens of KB
• hit time: complete in one clock cycle
• miss rates: 1-5%

°L2:
• size: hundreds of KB
• hit time: few clock cycles
• miss rates: 10-20%

°L2 miss rate is fraction of L1 misses
that also miss in L2

• why so high?
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Example: with L2 cache

°Assume
• L1 Hit Time = 1 cycle
• L1 Miss rate = 5%
• L2 Hit Time = 5 cycles
• L2 Miss rate = 15%  (% L1 misses that miss)
• L2 Miss Penalty = 200 cycles

°L1 miss penalty = 5 + 0.15 * 200 = 35
°Avg mem access time = 1 + 0.05 x 35

= 2.75 cycles

CS 61C L33 Caches III  (24) Wawrzynek Spring 2006 © UCB

Example: without L2 cache

°Assume
• L1 Hit Time = 1 cycle
• L1 Miss rate = 5%
• L1 Miss Penalty = 200 cycles

°Avg mem access time = 1 + 0.05 x 200
= 11 cycles

°4x faster with L2 cache! (2.75 vs. 11)
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What to do on a write hit?

°Write-through
• update the word in cache block and
corresponding word in memory

°Write-back
• update word in cache block
• allow memory word to be “stale”
⇒ add ‘dirty’ bit to each block indicating
that memory needs to be updated when
block is replaced
⇒ OS flushes cache before I/O…

°Performance trade-offs?
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Generalized Caching

°We’ve discussed memory caching in
detail.  Caching in general shows up
over and over in computer systems

• Filesystem cache
• Web page cache
• Game Theory databases / tablebases
• Software memoization
• Others?

°Big idea: if something is expensive
but we want to do it repeatedly, do it
once and cache the result.
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An actual CPU -- Early PowerPC
° Cache

• 32 KByte Instructions
and 32 KByte Data L1
caches

• External L2 Cache
interface with integrated
controller and cache
tags, supports up to 1
MByte external L2 cache

• Dual Memory
Management Units
(MMU) with Translation
Lookaside Buffers (TLB)

° Pipelining
• Superscalar (3

inst/cycle)
• 6 execution units (2

integer and 1 double
precision IEEE floating
point)
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And in Conclusion…
°Cache design choices:

• size of cache: speed v. capacity
• direct-mapped v. associative
• for N-way set assoc: choice of N
• block replacement policy
• 2nd level cache?
• 3rd level cache?
• Write through v. write back?

°Use performance model to pick
between choices, depending on
programs, technology, budget, ...


