
CS 61C L34 Virtual Memory (1) Wawrzynek Spring 2006 © UCB

4/17/2006
John Wawrzynek

(www.cs.berkeley.edu/~johnw)

www-inst.eecs.berkeley.edu/~cs61c/

CS61C – Machine Structures

Lecture 34 - Virtual Memory

CS 61C L34 Virtual Memory (2) Wawrzynek Spring 2006 © UCB

Review: Caches
°Cache design choices:

• size of cache: speed v. capacity
• direct-mapped v. associative
• for N-way set assoc: choice of N
• block replacement policy
• 2nd level cache?
• Write through v. write back?

°Best choice depends on programs,
technology, budget.

°Use performance model to pick
between choices.

CS 61C L34 Virtual Memory (3) Wawrzynek Spring 2006 © UCB

Another View of the Memory Hierarchy
Regs

L2 Cache

Memory

Disk

Tape

Instr. Operands

Blocks

Pages

Files

Upper Level

Lower Level

Faster

Larger

Cache
Blocks

Thus far{
{Next:

Virtual
Memory

CS 61C L34 Virtual Memory (4) Wawrzynek Spring 2006 © UCB

Memory Hierarchy Requirements

° If Principle of Locality allows caches
to offer (close to) speed of cache
memory with size of DRAM memory,
then recursively why not use at next
level to give speed of DRAM memory,
size of Disk memory?

°While we’re at it, what other things do
we need from our memory system?

CS 61C L34 Virtual Memory (5) Wawrzynek Spring 2006 © UCB

Memory Hierarchy Requirements

°Allow multiple processes to
simultaneously occupy memory and
provide protection – don’t let one
program read/write memory from
another

°Address space – give each program
the illusion that it has its own private
memory

• Suppose code starts at address
0x40000000. But different processes
have different code, both residing at the
same address. So each program has a
different view of memory.

CS 61C L34 Virtual Memory (6) Wawrzynek Spring 2006 © UCB

Virtual Memory
° Called “Virtual Memory”
° Next level in the memory hierarchy:

• Provides program with illusion of a very large
main memory:

- Working set of “pages” reside in main memory -
others reside on disk.

° Also allows OS to share memory, protect
programs from each other

° Today, more important for protection vs.
just another level of memory hierarchy

° Each process thinks it has all the memory
to itself

° (Historically, it predates caches)

CS 61C L34 Virtual Memory (7) Wawrzynek Spring 2006 © UCB

Virtual to Physical Address Translation

°Each program operates in its own virtual
address space; ~only program running

°Each is protected from the other
°OS can decide where each goes in memory
°Hardware (HW) provides virtual ⇒ physical
mapping

virtual
address

(inst. fetch
load, store)

Program
operates in
its virtual
address
space

HW
mapping physical

address
(inst. fetch
load, store)

Physical
memory

(incl. caches)

CS 61C L34 Virtual Memory (8) Wawrzynek Spring 2006 © UCB

Analogy

°Book title like virtual address
°Library of Congress call number like
physical address

°Card catalogue like page table,
mapping from book title to call #

°On card for book, in local library vs. in
another branch like valid bit indicating
in main memory vs. on disk

°On card, available for 2-hour in library
use (vs. 2-week checkout) like access
rights

CS 61C L34 Virtual Memory (9) Wawrzynek Spring 2006 © UCB

Simple Example: Base and Bound Reg

0

∞

OS

User A

User B

User C

$base

$base+
$bound

°Want discontinuous
mapping

°Process size >> mem
°Addition not enough!
⇒ use Indirection!

Enough space for User D,
but discontinuous
(“fragmentation problem”)

CS 61C L34 Virtual Memory (10) Wawrzynek Spring 2006 © UCB

Mapping Virtual Memory to Physical Memory

0

Physical Memory

∞
Virtual Memory

Code

Static

Heap

Stack

64 MB

°Divide into equal sized
chunks (about 4 KB - 8 KB)

0

°Any chunk of Virtual Memory
assigned to any chuck of
Physical Memory (“page”)

CS 61C L34 Virtual Memory (11) Wawrzynek Spring 2006 © UCB

Paging Organization (assume 1 KB pages)

Addr
Trans
MAP

Page is unit
of mapping

Page also unit of
transfer from disk
to physical memory

page 0 1K
1K

1K

0
1024

31744
Virtual
Memory

Virtual
Address

page 1

page 31

1K2048 page 2
...... ...

page 00
1024

7168

Physical
Address

Physical
Memory

1K
1K

1K

page 1

page 7
...... ...

CS 61C L34 Virtual Memory (12) Wawrzynek Spring 2006 © UCB

Virtual Memory Mapping Function
°Cannot have simple function to
predict arbitrary mapping

°Use table lookup of mappings

°Use table lookup (“Page Table”) for
mappings: Page number is index

°Virtual Memory Mapping Function
• Physical Offset = Virtual Offset
• Physical Page Number
= PageTable[Virtual Page Number]

(P.P.N. also called “Page Frame”)

Page Number Offset

CS 61C L34 Virtual Memory (13) Wawrzynek Spring 2006 © UCB

Address Mapping: Page Table

Virtual Address:
page no. offset

Page Table
Base Reg

Page Table located in physical memory

index
into
page
table

+

Physical
Memory
Address

Page Table

Val
-id

Access
Rights

Physical
Page
Address

.

V A.R. P. P. A.

...

...

CS 61C L34 Virtual Memory (14) Wawrzynek Spring 2006 © UCB

Page Table

°A page table is an operating system
structure which contains the mapping
of virtual addresses to physical
locations

• There are several different ways, all up to
the operating system, to keep this data
around

°Each process running in the operating
system has its own page table

• “State” of process is PC, all registers, plus
page table

• OS changes page tables by changing
contents of Page Table Base Register

CS 61C L34 Virtual Memory (15) Wawrzynek Spring 2006 © UCB

Administrivia

°Do your reading! Caches, VM can be
tricky to get.

°Project 5 out
°Exam

• Wed 4/19, 1 Pimentel 7-9pm
• Covers weeks 6-12 (focus on lecture
material)

• TA Review tonight evening - 10 Evans,
6:30-9:30pm

CS 61C L34 Virtual Memory (16) Wawrzynek Spring 2006 © UCB

Requirements revisited

°Remember the motivation for VM:
°Sharing memory with protection

• Different physical pages can be allocated
to different processes (sharing)

• A process can only touch pages in its
own page table (protection)

°Separate address spaces
• Since programs work only with virtual
addresses, different programs can have
different data/code at the same address!

°What about the memory hierarchy?

CS 61C L34 Virtual Memory (17) Wawrzynek Spring 2006 © UCB

Page Table Entry (PTE) Format
°Contains either Physical Page Number
or indication not in Main Memory

°OS maps to disk if Not Valid (V = 0)

° If valid, also check if have permission
to use page: Access Rights (A.R.) may
be Read Only, Read/Write, Executable

...
Page Table

Val
-id

Access
Rights

Physical
Page
Number

V A.R. P. P. N.

V A.R. P. P.N.

...

P.T.E.

CS 61C L34 Virtual Memory (18) Wawrzynek Spring 2006 © UCB

Paging/Virtual Memory Multiple Processes
User B:

Virtual Memory
∞

Code

Static

Heap

Stack

0
Code

Static

Heap

Stack

A
Page
Table

B
Page
Table

User A:
Virtual Memory
∞

0
0

Physical
 Memory

64 MB

CS 61C L34 Virtual Memory (19) Wawrzynek Spring 2006 © UCB

Comparing the 2 levels of hierarchy
 Cache version Virtual Memory vers.
 Block or Line Page
 Miss Page Fault
 Block Size: 32-64B Page Size: 4K-8KB
 Placement: Fully Associative
Direct Mapped,
N-way Set Associative

 Replacement: Least Recently Used
LRU or Random (LRU)

 Write Thru or Back Write Back

CS 61C L34 Virtual Memory (20) Wawrzynek Spring 2006 © UCB

Notes on Page Table
° Solves Fragmentation problem: all chunks same

size, so all holes can be used
° OS must reserve “Swap Space” on disk for each

process
° To grow a process, ask Operating System

• If unused pages, OS uses them first
• If not, OS swaps some old pages to disk
• (Least Recently Used to pick pages to swap)

° Each process has own Page Table
° Will add details, but Page Table is essence of

Virtual Memory

CS 61C L34 Virtual Memory (21) Wawrzynek Spring 2006 © UCB

Virtual Memory Problem #1
°Map every address ⇒ 1 indirection via
Page Table in memory per virtual
address ⇒ 1 virtual memory accesses =
2 physical memory accesses ⇒ SLOW!

°Observation: since locality in pages of
data, there must be locality in virtual
address translations of those pages

°Since small is fast, why not use a small
cache of virtual to physical address
translations to make translation fast?

°For historical reasons, cache is called a
Translation Lookaside Buffer, or TLB

CS 61C L34 Virtual Memory (22) Wawrzynek Spring 2006 © UCB

Translation Look-Aside Buffers (TLBs)
•TLBs usually small, typically 128 - 256 entries

• Like any other cache, the TLB can be direct
mapped, set associative, or fully associative

Processor TLB
Lookup Cache Main

Memory

VA PA
miss

hit data
Trans-
lation

hit

miss

On TLB miss, get page table entry from main memory

CS 61C L34 Virtual Memory (23) Wawrzynek Spring 2006 © UCB

And in conclusion…

°Manage memory to disk? Treat as cache
• Included protection as bonus, now critical
• Use Page Table of mappings for each user
vs. tag/data in cache

• TLB is cache of Virtual⇒Physical addr trans

°Virtual Memory allows protected sharing
of memory between processes

°Spatial Locality means Working Set of
Pages is all that must be in memory for
process to run fairly well

