
CS 61C L36 Input/Output (1) Wawrzynek Spring 2006 © UCB

4/21/2006
John Wawrzynek

(www.cs.berkeley.edu/~johnw)

www-inst.eecs.berkeley.edu/~cs61c/

CS61C – Machine Structures

Lecture 36 - Input/Output

CS 61C L36 Input/Output (2) Wawrzynek Spring 2006 © UCB

4 Qs for any Memory Hierarchy
° Q1: Where can a block be placed?

• One place (direct mapped)
• A few places (set associative)
• Any place (fully associative)

° Q2: How is a block found?
• Indexing (as in a direct-mapped cache)
• Limited search (as in a set-associative cache)
• Full search (as in a fully associative cache)
• Separate lookup table (as in a page table)

° Q3: Which block is replaced on a miss?
• Least recently used (LRU)
• Random

° Q4: How are writes handled?
• Write through (Level never inconsistent w/lower)
• Write back (Could be “dirty”, must have dirty bit)

CS 61C L36 Input/Output (3) Wawrzynek Spring 2006 © UCB

°Block #12 placed in 8 block cache:
• Fully associative
• Direct mapped
• 2-way set associative

- Set Associative Mapping = Block # Mod # of Sets

0 1 2 3 4 5 6 7Block
no.

Fully associative:
block 12 can go
anywhere

0 1 2 3 4 5 6 7Block
no.

Direct mapped:
block 12 can go
only into block 4
(12 mod 8)

0 1 2 3 4 5 6 7Block
no.

Set associative:
block 12 can go
anywhere in set 0
(12 mod 4)

Set
0

Set
1

Set
2

Set
3

Q1: Where block placed in upper level?

CS 61C L36 Input/Output (4) Wawrzynek Spring 2006 © UCB

°Direct indexing (using index and block
offset), tag compares, or combination

° Increasing associativity shrinks index,
expands tag

Block
offset

Block Address
Tag Index

Q2: How is a block found in upper level?

Set Select

Data Select

CS 61C L36 Input/Output (5) Wawrzynek Spring 2006 © UCB

°Easy for Direct Mapped
°Set Associative or Fully Associative:

• Random
• LRU (Least Recently Used)

Miss Rates
Associativity:2-way 4-way 8-way
Size LRU Ran LRU Ran LRU Ran
16 KB 5.2% 5.7% 4.7% 5.3% 4.4% 5.0%
64 KB 1.9% 2.0% 1.5% 1.7% 1.4% 1.5%
256 KB 1.15% 1.17% 1.13% 1.13% 1.12% 1.12%

Q3: Which block replaced on a miss?

CS 61C L36 Input/Output (6) Wawrzynek Spring 2006 © UCB

Q4: What to do on a write hit?
°Write-through

• update the word in cache block and
corresponding word in memory

°Write-back
• update word in cache block
• allow memory word to be “stale”
=> add ‘dirty’ bit to each line indicating that
memory be updated when block is replaced

=> OS flushes cache before I/O !!!

°Performance trade-offs?
• WT: read misses cannot result in writes
• WB: no writes of repeated writes

CS 61C L36 Input/Output (7) Wawrzynek Spring 2006 © UCB

Three Advantages of Virtual Memory
1) Translation:

• Program can be given consistent view of
memory, even though physical memory is
scrambled

• Makes multiple processes reasonable
• Only the most important part of program
(“Working Set”) must be in physical memory

• Contiguous structures (like stacks) use only
as much physical memory as necessary yet
still grow later

CS 61C L36 Input/Output (8) Wawrzynek Spring 2006 © UCB

Three Advantages of Virtual Memory
2) Protection:

• Different processes protected from each other
• Different pages can be given special behavior

- (Read Only, Invisible to user programs, etc).
• Kernel data protected from User programs
• Very important for protection from malicious
programs ⇒ Far more “viruses” under
Microsoft Windows

• Special Mode in processor (“Kernel mode”)
allows processor to change page table/TLB

3) Sharing:
• Can map same physical page to multiple users
(“Shared memory”)

CS 61C L36 Input/Output (9) Wawrzynek Spring 2006 © UCB

Why Translation Lookaside Buffer (TLB)?

°Paging is most popular
implementation of virtual memory
(vs. base/bounds)

°Every paged virtual memory access
must be checked against
Entry of Page Table in memory to
provide protection

°Cache of Page Table Entries (TLB)
makes address translation possible
without memory access in common
case to make fast

CS 61C L36 Input/Output (10) Wawrzynek Spring 2006 © UCB

And in Conclusion…
°Virtual memory to Physical Memory
Translation too slow?

• Add a cache of Virtual to Physical Address
Translations, called a TLB

°Spatial Locality means Working Set of
Pages is all that must be in memory for
process to run fairly well

°Virtual Memory allows protected
sharing of memory between processes
with less swapping to disk

CS 61C L36 Input/Output (11) Wawrzynek Spring 2006 © UCB

Administrivia

°Switch in order of lectures from original
schedule

• “Performance” will come after I/O section.

°We’re late getting the homework out this
week (sorry, busy with exam stuff).

• Will be posted later today.

°New set of reading assignments posted.

CS 61C L36 Input/Output (12) Wawrzynek Spring 2006 © UCB

Recall : 5 components of any Computer

 Processor
 (active)

Computer

Control
(“brain”)

Datapath
(“brawn”)

Memory
(passive)

(where
programs,
data live
when
running)

Devices
Input

Output

Keyboard,
Mouse

Display,
Printer

Disk,
Network

Earlier Lectures Current Lectures

CS 61C L36 Input/Output (13) Wawrzynek Spring 2006 © UCB

Motivation for Input/Output

° I/O is how humans interact with
computers

° I/O is how computers interconnect
(Internet/www)

° I/O is how computers sense and control
the environment.

° I/O gives computers long-term memory.
°Computer without I/O like a car without
wheels; great technology, but won’t get
you anywhere

CS 61C L36 Input/Output (14) Wawrzynek Spring 2006 © UCB

I/O Device Examples and Speeds
° I/O Speed: bytes transferred per second

(from mouse to Gigabit LAN: 10-million-to-1)
° Device Behavior Partner Data Rate

 (KBytes/s)
Keyboard Input Human 0.01
Mouse Input Human 0.02
Voice output Output Human 5.00
Floppy disk Storage Machine 50.00
Laser Printer Output Human 100.00
Magnetic Disk Storage Machine 10,000.00
Wireless Network I or O Machine 10,000.00
Graphics Display Output Human 30,000.00
Wired LAN Network I or O Machine 125,000.00

CS 61C L36 Input/Output (15) Wawrzynek Spring 2006 © UCB

What do we need to make I/O work?

°A way to present them
to user programs so
they are useful

cmd reg.
data reg.

Operating System
APIsFiles

Proc Mem

°A way to connect many
types of devices to the
Proc-Mem

PCI Bus

SCSI Bus

°A way to control these
devices, respond to
them, and transfer data

CS 61C L36 Input/Output (16) Wawrzynek Spring 2006 © UCB

Instruction Set Architecture for I/O
°What must the processor do for I/O?

• Input: reads a sequence of bytes
• Output: writes a sequence of bytes

°Some processors have special input and
output instructions

°Alternative model (used by MIPS):
• Use loads for input, stores for output
• Called “Memory Mapped Input/Output”
• A portion of the address space dedicated to
communication paths to Input or Output
devices (no memory there)

CS 61C L36 Input/Output (17) Wawrzynek Spring 2006 © UCB

Memory Mapped I/O

°Certain addresses are not regular
memory

° Instead, they correspond to registers
in I/O devices

cntrl reg.
data reg.

0

0xFFFFFFFF

0xFFFF0000

address

CS 61C L36 Input/Output (18) Wawrzynek Spring 2006 © UCB

Processor-I/O Speed Mismatch
°1GHz microprocessor can execute 1
billion load or store instructions per
second, or 4,000,000 KB/s data rate

• I/O devices data rates range from 0.01
KB/s to 125,000 KB/s

° Input: device may not be ready to send
data as fast as the processor loads it

• Also, might be waiting for human to act

°Output: device not be ready to accept
data as fast as processor stores it

°What to do?

CS 61C L36 Input/Output (19) Wawrzynek Spring 2006 © UCB

Processor Checks Status before Acting
°Path to device generally has 2 registers:

• Control Register, says it’s OK to read/write
(I/O ready) [think of a flagman on a road]

• Data Register, contains data

°Processor reads from Control Register
in loop, waiting for device to set Ready
bit in Control reg (0 ⇒ 1) to say its OK

°Processor then loads from (input) or
writes to (output) data register

• Load from or Store into Data Register
resets Ready bit (1 ⇒ 0) of Control
Register

CS 61C L36 Input/Output (20) Wawrzynek Spring 2006 © UCB

SPIM I/O Simulation
°SPIM simulates 1 I/O device: memory-
mapped terminal (keyboard + display)
• Read from keyboard (receiver); 2 device regs
• Writes to terminal (transmitter); 2 device regs

Received
Byte

Receiver Data
0xffff0004 Unused (00...00)

(IE)Receiver Control
0xffff0000

Ready
(I.E.)Unused (00...00)

Transmitted
Byte

Transmitter Control
0xffff0008

Transmitter Data
0xffff000c

Ready
(I.E.)Unused (00...00)

Unused

CS 61C L36 Input/Output (21) Wawrzynek Spring 2006 © UCB

SPIM I/O
°Control register rightmost bit (0): Ready

• Receiver: Ready==1 means character in Data
Register not yet been read;
1 ⇒ 0 when data is read from Data Reg

• Transmitter: Ready==1 means transmitter is
ready to accept a new character;
0 ⇒ Transmitter still busy writing last char

- I.E. bit discussed later

°Data register rightmost byte has data
• Receiver: last char from keyboard; rest = 0
• Transmitter: when write rightmost byte,
writes char to display

CS 61C L36 Input/Output (22) Wawrzynek Spring 2006 © UCB

I/O Example
° Input: Read from keyboard into $v0

lui $t0, 0xffff #ffff0000
Waitloop: lw $t1, 0($t0) #control

andi $t1,$t1,0x1
beq $t1,$zero, Waitloop
lw $v0, 4($t0) #data

° Output: Write to display from $a0
lui $t0, 0xffff #ffff0000

Waitloop: lw $t1, 8($t0) #control
andi $t1,$t1,0x1
beq $t1,$zero, Waitloop
sw $a0, 12($t0) #data

° Processor waiting for I/O called “Polling”
° “Ready” bit from processor’s point of view!

CS 61C L36 Input/Output (23) Wawrzynek Spring 2006 © UCB

Cost of Polling?
°Assume for a processor with a 1GHz
clock it takes 400 clock cycles for a
polling operation (call polling routine,
accessing the device, and returning).
Determine % of processor time for polling

• Mouse: polled 30 times/sec so as not to miss
user movement

• Floppy disk: transfers data in 2-Byte units
and has a data rate of 50 KB/second.
No data transfer can be missed.

• Hard disk: transfers data in 16-Byte chunks
and can transfer at 16 MB/second. Again, no
transfer can be missed.

CS 61C L36 Input/Output (24) Wawrzynek Spring 2006 © UCB

% Processor time to poll [p. 677 in book]
Mouse Polling, Clocks/sec

= 30 [polls/s] * 400 [clocks/poll] = 12K [clocks/s]

° % Processor for polling:
12*103 [clocks/s] / 1*109 [clocks/s] = 0.0012%
⇒ Polling mouse little impact on processor

Frequency of Polling Floppy
= 50 [KB/s] / 2 [B/poll] = 25K [polls/s]

° Floppy Polling, Clocks/sec
= 25K [polls/s] * 400 [clocks/poll] = 10M [clocks/s]

° % Processor for polling:
10*106 [clocks/s] / 1*109 [clocks/s] = 1%
⇒ OK if not too many I/O devices

CS 61C L36 Input/Output (25) Wawrzynek Spring 2006 © UCB

% Processor time to poll hard disk

Frequency of Polling Disk
= 16 [MB/s] / 16 [B] = 1M [polls/s]

°Disk Polling, Clocks/sec
= 1M [polls/s] * 400 [clocks/poll]
= 400M [clocks/s]

°% Processor for polling:
400*106 [clocks/s] / 1*109 [clocks/s] = 40%
⇒ Unacceptable

CS 61C L36 Input/Output (26) Wawrzynek Spring 2006 © UCB

What is the alternative to polling?

°Wasteful to have processor spend
most of its time “spin-waiting” for I/O
to be ready

°Would like an unplanned procedure
call that would be invoked only when
I/O device is ready

°Solution: use exception mechanism to
help I/O. Interrupt program when I/O
ready, return when done with data
transfer

CS 61C L36 Input/Output (27) Wawrzynek Spring 2006 © UCB

I/O Interrupt
°An I/O interrupt is like overflow
exceptions except:

• An I/O interrupt is “asynchronous”
• More information needs to be conveyed

°An I/O interrupt is asynchronous with
respect to instruction execution:

• I/O interrupt is not associated with any
instruction, but it can happen in the middle
of any given instruction

• I/O interrupt does not prevent any
instruction from completion

CS 61C L36 Input/Output (28) Wawrzynek Spring 2006 © UCB

Definitions for Clarification

°Exception: signal marking that
something “out of the ordinary” has
happened and needs to be handled

° Interrupt: asynchronous exception
°Trap: synchronous exception
°Note: Many systems folks say
“interrupt” to mean what we mean
when we say “exception”.

CS 61C L36 Input/Output (29) Wawrzynek Spring 2006 © UCB

Interrupt Driven Data Transfer

(1) I/O
interrupt

(2) save PC

Memory

add
sub
and
or

user
program

read
store
...
jr

interrupt
service
routine

(3) jump to
interrupt
service
routine
(4)
perform
transfer

(5)

CS 61C L36 Input/Output (30) Wawrzynek Spring 2006 © UCB

SPIM I/O Simulation: Interrupt Driven I/O
° I.E. stands for Interrupt Enable
°Set Interrupt Enable bit to 1 have interrupt
occur whenever Ready bit is set

Received
Byte

Receiver Data
0xffff0004 Unused (00...00)

(IE)Receiver Control
0xffff0000

Ready
(I.E.)Unused (00...00)

Transmitted
Byte

Transmitter Control
0xffff0008

Transmitter Data
0xffff000c

Ready
(I.E.)Unused (00...00)

Unused

CS 61C L36 Input/Output (31) Wawrzynek Spring 2006 © UCB

Benefit of Interrupt-Driven I/O
°Find the % of processor consumed if the
hard disk is only active 5% of the time.
Assuming 500 clock cycle overhead for
each transfer, including interrupt:

• Disk Interrupts/s = 16 MB/s / 16B/interrupt
 = 1M interrupts/s

• Disk Interrupts, clocks/s
= 1M interrupts/s * 500 clocks/interrupt
= 500,000,000 clocks/s

• % Processor for during transfer:
500*106 / 1*109 = 50%

°Disk active 5% ⇒ 5% * 50% ⇒ 2.5% busy

CS 61C L36 Input/Output (32) Wawrzynek Spring 2006 © UCB

“And in conclusion…”
° I/O gives computers their 5 senses
° I/O speed range is 100-million to one
°Processor speed means must
synchronize with I/O devices before use

°Polling works, but expensive
• processor repeatedly queries devices

° Interrupts works, more complex
• devices causes an exception, causing
OS to run and deal with the device

° I/O control leads to Operating Systems

