University of California, Berkeley — College of Engineering
Department of Electrical Engineering and Computer Sciences

Fall 2005 Instructor: Dan Garcia 2005-12-17
CSEIC FINAL EXAM ©
©C C Y LA
Last Name
First Name
Student ID Number
Login | cs6lc-
Login First Letter (pleasecircle) |a b ¢ d e £ g h i j k 1 m
Login Second Letter (pleasecircle) |a b ¢ d e £ g h i j k 1 m
n o p g r s t u v w X y 2z
The name of your LAB TA (please circle) Jeremy Michael Navtej Zhangxi

Name of the person to your Left

Name of the person to your Right

All the work is my own. | have no prior knowledge of the exam
contents nor will | share the contents with others in CS61C

who have not taken it yet. (please sign)

Instructions (Read Me!)

+ This booklet contains 9 numbered pages including the cover page. Put all answers on these pages (feel
free to use the back of any page for scratch work); don’t hand in any stray pieces of paper.

« Please turn off all pagers, cell phones & beepers. Remove all hats & headphones. Place your
backpacks, laptops and jackets at the front. Sit in every other seat. Nothing may be placed in the “no fly
zone” spare seat/desk between students.

« Fill in the front of this page and put your name & login on every sheet of paper.

» You have 180 minutes to complete this exam. The exam is closed book, no computers, PDAs or
calculators. You may use two pages (US Letter, front and back) of notes, plus the green reference
sheet from COD 3/e.

« There may be partial credit for incomplete answers; write as much of the solution as you can. We will
deduct points if your solution is far more complicated than necessary. When we provide a blank, please
fit your answer within the space provided. “IEC format” refers to the mebi, tebi, etc prefixes. You have 3
hours...relax.

» You must complete ALL THE QUESTIONS, regardless of your score on the midterm.

Clobbering only works from the Final to the Midterm, not vice versa.

Problem M1 M2 M3|Ms F1| F2 F3 F4 | F5 | Fs Total
Minutes | 20 | 20 | 20 | 60 24 | 24 1 24 |24 | 24 |120 180
Points | 10 | 10 | 10 | 30 18 | 18 | 18 |18 | 18 | 90 120

Score

Name: Login: csé1c-

Midterm Revisited

M1) “Doctor, our patient is encoding!” (10 pts, 20 min)

a)

b)

d)

A Binary Coded Decimal (BCD) uses a dedicated nibble for each decimal digit, so a byte could
represent all the numbers from 00-99. We will use our standard MIPS 32-bit word to encode a
BCD. What is the ratio (to one significant figure, in decimal) of overall bit patterns to the ones
that encode a valid BCD? (E.g., With a single decimal digit, it'd be 16/10 = 2.) Show your work.
Your answer should not be an expression, it should be a decimal number rounded to 1
significant figure.

Suppose we have a very small 4 pixel x 8 pixel grayscale video display where each pixel can
independently be set to one of 4 shades of gray. How many unique images can possibly be
displayed? Leave your answer in IEC form (e.g., 64 kibi images, 8 mebi images, etc).

If we were to try to compare two f£1oats using our MIPS signed integer compare sit,
when would we get an incorrect answer (i.e., describe in English the set of all possible inputs
that generate incorrect answers)? Assume neither encodes a Nan or 0.

Put the corresponding letters for each 32-bit value in order from least to greatest. Hint: the
question isn’t asking you to write down what each one is, it only asks for the relative order!

0xF0000000 (IEEE float)
0xF0000000 (2's complement)
0xF0000000 (sign-magnitude)
0xFFFFFFFF (2's complement)
OxXFFFFFFFF (1's complement)
0xF1000000 (IEEE float)
0x70000000 (IEEE float)
0x7FFFFFFF (2's complement)
080000010 (IEEE float)

TIOGMMOOWP

Least Greatest

2/9

Name: Login: cs61c-

M2) “Those are some big numbers you got there...” (10 pts, 20 min)

A bignum is a data structure designed to represent large integers. It does so by abstractly considering
all of the bits in the num array as part of one very large integer. This code is run on a standard 32-bit
MIPS machine, where a word (defined below) is 32 bits wide and a halfword is 16 bits wide.

typedef unsigned int word; Thi : - ' .
CRpbant wiigaed whore hattiseds his function shows how bignums are used:

typedef struct bignum_struct { . . . :
int length; // number of words void ?rlntﬁblgnum(bxgnqm *b) {)
word *num; // the actual data printf("0x"); // Print hex prefix
} bignum; for (int i = b->length-1; i>=0; i--)
printf("%08x", b->num[i]);

a) Is the ordering of words in the num array }
BIG or LITTLE endian? (circle one)

b) How many bytes would be used in the static, static stack heap

stack and heap areas as the result of lines 1, 3
and 4 below? Treat each line independently! Line 1

E.g., For line 3, don’t count the space allocated

in line 1. EAEG o

1 bignum biggie; Line 4

2 int main(int argc, char *argv[]) {
3 bignum bigTriple[3], *bigArray[4];
4 bigArray[l] = (bignum *) malloc (sizeof(bignum) * 2);

b) Complete the add function for two bignums, which you may assume are the same length. OurC
compiler translates z = x + y (where x,y,z are words) to add (not addu, as is customary) and thus
could generate a hardware (HW) overflow we don’t want, as we’re running on untrusted HW. Your
code should be written so that words never overflow in HW (so we do all adding in the halfword).

void add(bignum *a, bignum *b, bignum *sum, word carry_in, word *carry out) {

// reserve space for num array. Remember a and b are the SAME length...

sum->num =

for (int i=0; i < a->length; i++) { // word-by-word do addition of lo, hi halfwords
// add lo halfwords of a,b
word lo =
// add hi halfwords of a,b (but in the safe, low halfword area so no HW overflow)
word hi =
// combine low and hi halfwords (put back in their places), like a lui-ori
sum->num[i] = (hi << 16) | (halfword) lo;

// what’s the carry_in for the next word?

carry_in =
}
sum->length = a->length;
*carry_out = carry_in;

3/8

Name:

Login: cs61c-

M3) “Fenry Hord invented the disassembly line...” (10 pts, 20 min)

a) Given the MIPS code below, write the equivalent C function below in the structure we've
provided. Feel free to add comments to help your disassembly. To aid readability, you must
use the variable names from our comments below in your C solution where appropriate.

foo:

addiu $sp, $sp, -12
sw $a0, 0(Ssp)
sw $al, 4($sp)
sw $ra, 8($sp)
move $al0, $al
addiu $a0, $a0, 1
jal malloc

move $t0, $vO

1w $tl, 0($sp)
lw $t2, 4($sp)
addu §$t2, §$t2, $t1

foo loop:

beq $t2, $tl, foo_end
1lbu $t4, 0($tl)

ori $t4, $t4, 0x20

sb $t4, 0($t0)

addiu $t0, $t0, 1

addiu $t1, $t1, 1

;| foo_loop

foo end:

sb $0, 0($t1)
1w $ra, 8($sp)
addiu $sp, $sp, 12
jr $ra

e e e ke e A

S s W Sk SR Sk S

S

src
size

dest
src

end

for(

foo (src, size) {

I

b) If src contained letters, what is a more appropriate name for the subroutine fo0?
(i.e., what would “ja1 foo” do, from the point of view of the caller?)

Hint: you might find the green sheet handy here.

c) What if we called foo from printf a@s SO: printf ("..format string.", foo(source, size)).
Why is this bad form? Hint: think about what would happen if this were done many times.

d) Let's say we removed the “sb $0, 0(s$t1)” instruction and then made the same call to fco
from print £ as in question (c) above: What are all the things that could happen?

4/9

Name: Login: cs61c-

Post-Midterm Questions

F1) “Where’s the sofr (sophomore, freshman) instr?” (18 pts, 24 min)

On the right is the single-cycle Instruction<31:0>
MIPS datapath presented uPC sel—d Instruction| [~ [~ [A |
during lecture. Your job is to IRd 18 SERSIETRN | oo I l’j'_, i
modify the diagram to ReeDst—X1 Mux / L O
accommodate a new MIPS ezt | o 4 Fisﬁr’-‘ Ak | | T R4 fml6
instruction. Your modification hush Mem Wy

may use simple adders, busW Rw R - f‘b T S H

shifters, mux chips, wires, and 32 Sagers Limae. TS = g

new control signals. If et 12| 2

necessary, you may replace ke 2 T b
original labels. iy lg . L/ Dataln 3 e

Function calls in MIPS typically S ‘ I : Gl pMemory

end with stack restoration and [Al

jr Sra as shown below. [;;*L,w.;,‘i‘,

Because this happens often, we want to do this in one instruction instead of two. We’'ll design a new
I-type instruction, srjr (stack restore, jump register), as follows:

addi sp, Ssp, 16 :
= o '9 srjr $ra $sp 16

a) What is the RTL for srjr that will allow it to have the widest range of stack restoration?
Hint: stack restoration always occurs in non-negative word units... The jr is done already.

; PC = Rirs]
b) What is the most $sp could change as a result of a srjr call (in Bytes)? Use IEC format.

Bytes (plus or minus a byte).

c) Modify the picture above and list your changes below. You may not need all the boxes.
Please write them in “pipeline stage order” (i.e., changes affecting IF first, MEM next, etc)

(i)

(1)

(iil)

(iv)

(v)

(vi)

d) We now want to set all the control lines appropriately. List what each signal should be
(an intuitive name or {0, 1, x = don't care}). Include any new control signals you added.

RegDst | RegWr | nPC_sel | ExtOp | ALUSrc | ALUctr | MemWr | MemtoReg

5/9

Name:

F4) Synchronous Digital Circus (18 pts, 24 min)

Login: cs61c-

We are designing a circuit with a 1-bit input (x(t)) and a 2-bit output (o(t)), that will produce, at time
t, the number of zeros in the set {1(t-2), 1(t-1), I(t)}.Asanexample,

the input:

a) Complete the FSM diagram below. Our states have been labeled sxy
indicating that the previous 2 bits,{1(t-2), 1(t-1)} would be {x, y}.
Fill in the truth table on the right. The previous state is encoded in
(e1,P0), the next state is encoded in (v1,80), and the output is encoded
as (01,00). Make sure to indicate the value of the output on your state

transitions.

)t
)t

b) Provide fully reduced (i.e., fewest gates to implement...you can use any n-input gates)

I: 1100100110111000
...will produce theoutput: 0: 0 01 2222211110123

P1 /PO IjO1 N1 NO
0,010
001
0j1]0
0i1]1
1,00
11011
1,110
111

Boolean expressions for the Output (01,00) and Next State (v1,n0) bits. If there is a name for
any of the circuits, write it on the left. E.g., “The always-17, “3-input NAND”, etc. A 2-input XOR

has the symbol of “@".

]
[l
fl

o
(=]
i

2
-
1

c) Draw the overall circuit using the fewest gates possible with and without feedback below.
You may add registers. “Feedback” means outputs are somehow fed back into inputs.

Scratch space

Assume we've correctly implemented the answer to (b) as a black box in the middie.

With feedback Without feedback
I o1 o1 ol
I I
e — 00 = 00
Pl e = Pl I
— | N1 00 - | N1
PO NO PO NO

o1

00

