2005Fa CS61C Final Exam Answers
[not to leave 385 Sodaj

M1:Numbers

a)

b)

d)

Overall bit patterns? 232 = 4,294,967,296 (the exact # is not required; roughly a bit more than
4,000,000,000)

How many encode a valid BCD? 8 decimal digits, so 10® = 100,000,000

Ratio is 2°%/10% = 42.94967296 = 40 (to one significant figure).

Each pixel is independent, and there are 4x8=32=2° of them, so it’s 4~ = (2°)>=2%
= 16 exbi images.

Comparing floats using signed int compare, huh? The relative ordering of all positive
numbers is the same (increasing from 0 to max_positive) for both encodings, so comparing two
positive £loats with signed compare works. Also, for both encodings the bit patterns for
negative numbers all start with a leading 1 (0x80000000 through 0xFFFFFFFF) S0 comparing a
negative float with a positive £1oat using signed int compare will also yield the correct
answer. However, when comparing two negative floats, the sign-magnitude nature of £1oats
means that as we increase the bit patterns from (0x80000000 through 0xFFFFFFFF) floats
move from 0 toward -, but signed ints move the other way from - (-2, really) toward 0.

Thus, we will get an incorrect answer when comparing two different negative numbers.
Put the corresponding letters for each 32-bit value in order from least to greatest:

0xF0000000 (IEEE float) = - huge

0xF0000000 (2's complement) = 234230 4 0¥ 4 0%
0xF0000000 (sign-magnitude) = -(2°! — 2%) =-2°! + 2%
OxXFFFFFFFF (2's complement) = -1

OXFFFFFFFEF (1's complement) = -0

0xF1000000 (IEEE float) = - huger

0x70000000 (IEEE float) =+ huge

0x7FFFFFFF (2's complement) = 5

0x80000010 (IEEE float) = - small denorm (value doesn’t matter)

TEmQmmoUOwe

f,a,C,b,d,i,C,h,g

Name: Login: cs61c-

M2) “Those are some big numbers you got there...” (10 pts, 20 min)

A bignum is a data structure designed to represent large integers. It does so by abstractly considering
all of the bits in the num array as belonging to one very large integer. This code is run on a standard 32-
bit MIPS machine, where a word (defined below) is 32 bits wide and halfword is 16 bits wide.

typedef unsigned int word; ; ; : .
rpedet uRaliHEN SRuct -l Scid This function shows how bignums are used:

typedef struct bignum struct {
int length; // number of words
word *num; // the actual data
} bignum;

void print_bignum(bignum *b) {
printf("0x"); // Print hex prefix
for (int i = b->length-1; i>=0; i--)
printf("%08x", b->num[i}]);
a) Is the ordering of words in the num array }
BIG or “LITTLE endian? (circle one)

b) How many bytes would be used in the stafic, stafic stack heap
stack and heap areas as the result of lines 1, 3
and 4 below? Treat each line independently! Line 1
E.g., For line 3, don’t count the space allocated
in line 1.

Line 3

1 bignum biggie;
2 int main(int argc, char *argv[]) { Line 4
3 bignum bigTriple[3], *bigArray[4]:;
4 bigArray[l] = (bignum *) malloc (sizeof(bignum) * 2);

b) Complete the add function for two bignums, which you may assume are the same length. Our C
compiler translates z = x + y (where x,y,z are words) to add (not addu, as is customary) and thus
could generate a hardware (HW) overflow we don’t want, as we’re running on untrusted HW. Your
code should be written so that words never overflow in HW (so we do all adding in the halfword).

void add(bignum *a, bignum *b, bignum *sum, word carry_ imn, word *carry out) {

// reserve space for num array. Remember a and b are the SAME length...

sum->num =

for (int i=0; i < a->length; i++) { // word-by-word do addition of lo, hi halfwords
// add lo halfwords of a,b
word lo =
// add hi halfwords of a,b (but in the safe, low halfword area so no HW overflow)
word hi =
// combine low and hi halfwords (put back in their places), like a lui-ori
sum->num[i] = (hi << 16) | (halfword) 1lo;

// what’s the carry in for the next word?

carry_in = hi > 16
}
sum->length = a->length;
*carry _out = carry_in;

3/10

M3:MIPS->C

a) char *foo (char *src, size t size) {
// forgetting sizeof (char) below is ok
char *dest, *d, *end;
dest = (char *) malloc ((size+l)*sizeof(char));

for (d=dest,end=src+size; d != end; d++, sro+t) {
*d = *sre | 0x20;
}

*d = 0;
return dest;
}

b) strnlowercasecpy (make lowercase)
We’ll also accept a name that doesn’t reference the size, like strlowercasecpy

¢) Two possibilities, each equally valid
* Memory leak! (You call malloc but never free the space...).
e We don’t check whether ma11oc will fail! (which ties into the previous reason; if you
leak memory and call print£ (™..”, foo()) lots of times, eventually this error will

come up. It comes up quicker if size is big!

d) Here are the things it could do
» Segmentation Fault (you run off the end of the string into an unallocated area)
* Prints the output of foo correctly
» Prints the output of foo followed by some garbage

F1:Datapath

srjr S$ra, $sp, 16

a)
b)

<)

d)

R[rt] = R[rt] + (ZeroExt(Imm) << 2); PC = R{rs]

256 kibi (16 unsigned OXFFFF bits of words = 18 unsigned bytes)

ii.

Add mux so Ra input is sometimes Rs, sometimes Rt, call the control signal RegSrc
Modify Extender so that it can do a “ZeroShiftExtend”, widen ExtOp control line

RedDst=rt (0)

RegWr=1

nPC_sel=Jump
ExtOp=ZeroShiftExtend
ALUSrc=Extender (1)
ALUctr=ADD

MemWr=0

MemtoReg=ALU {0}
[NEW]RegSrc=Rt

F4:SDS

F4a) From s00 we have two transition possibilities, 1=0 and 1=1. I’ve felt it useful to think about
the past values 1(t-2), 1(t-1) and 1(t) to figure out where to go. This is a simple box (a shift
register) that keeps the last two values in the state variables sx and sy. Every step we output ~sx +
~Sy + ~I = ~P1 +~P0 + ~I. Also every step N1=P0, NO=I. We don’t even need a truth table to
know this — it’s part of the definition of sxy.

PP I 00 NN (Input/Output label for edge) [#2I (ABC) = NumberOfZerosIn(P1,P0,I)]
10 10 10

S00 0 11 800 (0/3) # Had two Os, another one means we stay here and output #ZI(000)=3
s00 1 10 S01 (1/2) # This is our first 1 in a while, register we’ve seen a 1 by
setting I(t-1) to 1 (i.e., S01) and output #ZI(001)=2
S01 © 10 S10Q {0/2) # Saw a 01 before but this 0 means we goto S10 and output #ZI(010)=2
{1/1) # This is the 2" 1 in a row, go to S11 and output #ZI(011)=1

10 S00 (0/2) # Saw a 1 2 timesteps ago, nothing since. Goto S00,output #ZI(100)=2
01 S01 (1/1) # Saw a 1 2 timesteps ago, a 1 now. Goto 01, output #ZI(101)=1

S10 0
$10 1

01 S10 (0/1) # Saw 2 straight 1s, now a 0. Goto S10, output #zZI(110)=1
00 811 (1/0) # Everything is coming up 1s! Stay here (in S11), output #ZI(111)=0

si1 ¢
811 I

19
e
Y ¥ Y ¥
it
&

0/3

F4b)

Fully reduced expressions for 01,00 and N1,N0, huh? Well, some are easier than others. We’ll do the
easier ones first. Looking at the truth table (not doing the mindless sum-of-products calculation), we
see:

NO=I
N1=PO

Which we already knew from part (a)! There are no names for these circuits. Let’s now look at o1
and o0. If we’re extremely clever, we remember the two bit patterns for an adder’s two output bits:
01 is a minority circuit and 00 is a 3-input xnor. Let’s see if we can figure that out even if we don’t
remember these facts. Let’s study the truth table and look at the negative spaces (the times when the
output is zero). We see when p1 is 0 00 looks like xnor (P0,1) =~(P0 ® 1). When P1 is 1 00 looks
xor(P0,I) = (P0 ® I). Thatis, Po®I is being conditionally inverted by p1, which is what an xor
does! From this, we see that

00 = ~[P1@(PO®I)], i.c. the post-negation of two cascaded xors, which is the same as a 3-input
xnox!

01 is a little harder. We can still study the table and see some patterns. That is, when 1 = 0, 01
looks like nand (P0,I) = ~(P0*I). When P1=1, 01 is like a nor (P0,I) = ~(P0+I). This yields

Ol = P1*(PO*I) + P1*(P0O+I)
= ﬁ* (FG+I) + P1* (E*-I_) # DeMorgan’s law

=Pl PO +P1LI+PlLPOTI # distribution

Now it might look like this is minimal, but we can check two ways that it’s not. First, there’s
symmetry to the bit patterns (the expression is true whenever at least two of the three components
P1,p0 or I are false) BUT there’s not symmetry to the expression. Also, we can see that ~po-~1
yields a 1 in 01 independent of p1 from the truth table. We can also do some funky Boolean
algebra. ..

Recall the following distributive+law-of-1s+identity simplification?

A+AB = A(1+B) = A(1l) = A

Well, we can run it backwards. That is, we can start with A and generate A+aB.
We do that here with ~p1~po0:

P88 = P1 p0(1) = P1 PO(1+I) = BB

So that means our three terms for 01 are now four:

o1 = B1 Bt # from above
o1 = PO I # distributive+law-of-ls+identity
ol = PO # distribution

P1
01 = P1 PO + # complementarity
P1 I+P0T # identity

01l = PO +

01 = (P1P0O + PlI + POI) # lots more Boolean algebra!
...a NotMajority, or AntiMajority, or Minority circuit!

We could also do this the standard plug-and-chug SoP (sum-of-products) way:

BRSO + P1POT +
F1 P01

01 = # sum-of-products

—

 +PLPOT +

| + B

rev 1dempdtent, commutativity

Ol = E +

Ol = P1 PO(I+I) + Pl I(PO+P0) + PO I(P1+Pl) # commutativity, rev distrib

o1 = P1 FO.(1) + P1 .T[-(1) + PO ‘f(1) # complementarity

01 = P1 PO + P1 I + PO I # identity
01 = {P1P0 + P1I + POI) # lots more Boolean algebra!

...a NotMajority, or AntiMajority, or Minority circuit!

F4c)

The feedback circuit is the standard synchronous digital systems model we’ve seen several times,

where the output is passed through flip-flops and sent back to the input.

The non-feedback circuit we haven’t seen before. However, from the problem description we know
that sx and sy (i.e., P1 and p0) are really just time-delayed versions of the inputs. L.e., PO=I(t-1)

and P1=I(t-2), we have the answer on the right.

With feedback Without feedback
I (0)] 01 01
1 — et 1 ——
1O . B
P1 P1
' 00 i i N1
|—_““@i°-| e

