Polling vs. Interrupts

Operation	Definition	Pro/Con	Good for
Polling	repeatedly check if ready to do I/O	+ fast if there is work to do + easy to implement	regular or high bandwidth transfers
Interrupts	do I/O when an event occurs	+ only does work if there is work- slow per unit of data	irregular or unpredictable events

CPU Performance

- Iron Law (or Performance Equation): CPU time = (# instructions)(CPI)(Clock Period)
 - # instructions: how many instructions executed during program (insts/program)
 - CPI (Cycles per Instruction): avg number of cycles to complete an instruction
 - Clock Period: Inverse of clock frequency

Performance Problem

- What is the CPI of our pipelined MIPS processor if it has forwarding, every branch delay slot is filled with useful work, and there are no load hazards?
- What if only half of the branch delay slots contain useful work and branches occur about 20% of the time?

$$0.8x1 + 0.1x1 + 0.1x2 = 1.1$$

Operation Type	Frequency	CPI for CPU A	CPI for CPU B
ALU	50%	2	1
Load	20%	4	2
Store	10%	2	1
Branch	20%	1	1

- If CPU A and B have the same clock speed, how many times faster is B? $\text{CPIB/CPIA} = (0.5 \times 2 + 0.2 \times 4 + 0.1 \times 2 + 0.2 \times 1) / (0.5 \times 1 + 0.2 \times 2 + 0.1 \times 1 + 0.2 \times 1) = 2.1 / 1.2$
- Clearly CPUA is bottlenecked by not having a cache. What would the CPI of Loads and Stores need to be to match the performance of B?
 0,but thats impossible
- By only changing the clock speed, how many times faster would that need to be for CPU A to match the performance of B? 2.1/1.2