
Fragmentation
External • Usually occurs when the block size is not fixed

• Gaps in between blocks that are too small to use
Internal • Usually occurs when the block size is fixed

• Gaps inside the blocks that are allocated but not used

Memory Allocation Schemes
Free List • Use best-fit, first-fit or next-fit to allocate space from list
Slab
Allocator

• Breaks up memory into slabs of similar sized blocks
• A bitmap can be efficiently used to record which blocks are in use

Buddy
Allocator

• Like slab allocator, but dynamically adjusts to reduce internal fragmentation
• Large blocks can be split in two and adjacent empty buddy blocks can

combine into a bigger block

Garbage Collection Techniques
Reference
Counting

• Keep track of the number of pointers to a memory location
• Free when there are no more pointers pointing to it
• Circular data structures wreak havoc on this

Mark &
Sweep

• From root set (any accessible memory) do a depth first search and mark any
object you encounter

• Any garbage won’t be marked; so all unmarked nodes can be freed
Copying • Divide memory into two spaces, but only use one at a time

• When garbage collecting, copy all objects to the other space and compact
them in the process

• Accomplished by using forwarding pointers

MIPS Registers (First Look)
• There are 32 registers (numbered $0-$31) and each can hold 32 bits
• Temporary Registers - $t0-$t9 - Used to hold “temporary” values
• Saved Registers - $s0-$s7 - Used to hold “saved” values
• Zero Register - $0 or $zero - Always 0, even if written to

MIPS Instructions (A few to get started)
Instruction Syntax Example Effect

add add dest src0 src1 add $s0 $s1 $s2 $s0 = $s1 + $s2

sub sub dest src0 src1 sub $s0 $s1 $s2 $s0 = $s1 - $s2

addi addi dest src0 immediate addi $s0 $s0 12 $s0 = $s1 + 12

lw lw dest offset(base address) lw $t0 4($s0) $t0 = Mem[$s0 + 4]

sw sw src offset(base address) sw $t0 4($s0) Mem[$s0 + 4] = $t0

bne bne src0 src1 branchAddress bne $t0 $t1 notEq if($t0!=$t1) goto notEq

beq beq src0 src1 branchAddress beq $t0 $t1 equal if($t0==$t1) goto Eq

j j jumpAddress j jumpTarget goto jumpTarget

Week 2 (1/26)

CS 61C
Spring 2010

Week 4 (2/9)
Scott Beamer (cs61c-ta)

Memory Management & MIPS

MIPS Practice
• Fill in the gaps in the table and try to guess what it is doing

C MIPS

a = 17;
b = 71;
product = 0;
while(a != 0) {
 product += b;
 a--;
}

// Mappings
a→$s0
b→$s1
product→$s2

 addi $s0, $0, 17
 addi $s1, $0, 71
 add $s2, $0, $0
loop: beq $s0, $0, done
 add $s2, $s2, $s1
 addi $s0, $s0, -1
 j loop
done:

// dest and source are int[]
for(int i=0; i!=n; i++) {
 dest[i] = source[i];
}

// Mappings
i->t0
n->s0
&source->s1
&dest->s2

 add $t0, $0, $0
loop: beq $t0, $s0, done
 lw $t1, 0($s1)
 sw $t1, 0($s2)
 addi $t0, $t0, 1
 addi $s1, $s1, 4
 addi $s2, $s2, 4
 j loop
done:

List last = NULL;
while(l != NULL) {
 last = l;
 l = l->next;
}

 add $t0, $0, $0
loop: beq $s0, $0, done
 add $t0, $s0, $0
 lw $s0, 4($s0)
 j loop
done:

